Suppr超能文献

产 3-羟基丁酸酯共聚酯的基因缺失 Ralstonia eutropha H16 工程菌的构建。

Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents.

机构信息

Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.

出版信息

Appl Environ Microbiol. 2012 Aug;78(15):5375-83. doi: 10.1128/AEM.00824-12. Epub 2012 May 25.

Abstract

β-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate, Ralstonia eutropha H16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. In R. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373-5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA, bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, and pcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-type R. eutropha and the mutants. In contrast, during the growth on oleate of a multiple mutant lacking phaA, bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaA and all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.

摘要

β-酮硫解酶通过将两个乙酰辅酶 A(乙酰-CoA)分子缩合为乙酰乙酰-CoA,催化细菌中聚(3-羟基丁酸酯)[聚(3HB)]生物合成的第一步,并且还参与脂肪酸的降解。在丙酸或戊酸生长时,Ralstonia eutropha H16 产生共聚物聚(3-羟基丁酸酯-共-3-羟基戊酸酯)[聚(3HB-co-3HV)]。在 R. eutropha 中,存在 15 种β-酮硫解酶同源物。在 8 倍突变体中(Lindenkamp 等人,应用。环境。微生物。76:5373-5382,2010),3-羟基丁酰辅酶 A(3HB-CoA)的合成可显著降低。在这项研究中,生成了一种缺乏 9 种β-酮硫解酶基因同源物(phaA、bktB、H16_A1713、H16_B1771、H16_A1528、H16_B0381、H16_B1369、H16_A0170 和 pcaF)的 9 倍突变体。为了研究当短链或长链甚至链长脂肪酸作为碳源时聚羟基烷酸酯的生产能力,分析了之前研究中的几种突变体和新生成的 9 倍突变体的生长和储存行为。选择丙酸、戊酸、辛酸、十一烷酸或油酸作为唯一的碳源。在辛酸上,野生型 R. eutropha 和突变体之间的生长或储存行为没有明显差异。相比之下,在缺乏 phaA、bktB 和 H16_A0170 的多重突变体生长在油酸上时,聚(3HB)的积累减少。令人惊讶的是,在葡萄糖酸盐上生长的多重突变体积累的聚(3HB)的量不同;它远低于在油酸上的量。无论使用哪种碳源,油酸还是葡萄糖酸盐,H16ΔphaA 和所有多重突变体的β-酮硫解酶对乙酰乙酰-CoA 的活性仍保持在野生型的 10 倍以下。在以戊酸作为唯一碳源生长时,9 倍突变体积累了几乎是聚(3-羟基戊酸酯)[聚(3HV)]均聚物,其 3HV 成分占 99mol%。

相似文献

3
Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives.
Appl Microbiol Biotechnol. 2022 Apr;106(8):3021-3032. doi: 10.1007/s00253-022-11928-9. Epub 2022 Apr 22.

引用本文的文献

1
Impact of various β-ketothiolase genes on PHBHHx production in Cupriavidus necator H16 derivatives.
Appl Microbiol Biotechnol. 2022 Apr;106(8):3021-3032. doi: 10.1007/s00253-022-11928-9. Epub 2022 Apr 22.
3
Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol.
Metab Eng. 2021 Sep;67:262-276. doi: 10.1016/j.ymben.2021.06.010. Epub 2021 Jul 2.
4
Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
World J Microbiol Biotechnol. 2018 May 24;34(6):79. doi: 10.1007/s11274-018-2460-5.
5
Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in Consolidated Bioprocessing.
Front Microbiol. 2017 Oct 24;8:2060. doi: 10.3389/fmicb.2017.02060. eCollection 2017.
6
Production of (R)-3-hydroxybutyric acid by Arxula adeninivorans.
AMB Express. 2017 Dec;7(1):4. doi: 10.1186/s13568-016-0303-z. Epub 2017 Jan 3.
8
Haloarchaeal-type β-ketothiolases involved in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Haloferax mediterranei.
Appl Environ Microbiol. 2013 Sep;79(17):5104-11. doi: 10.1128/AEM.01370-13. Epub 2013 Jun 21.
9
Microbial production of lactate-containing polyesters.
Microb Biotechnol. 2013 Nov;6(6):621-36. doi: 10.1111/1751-7915.12066. Epub 2013 May 29.

本文引用的文献

1
Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains.
Appl Environ Microbiol. 2011 May;77(9):2847-54. doi: 10.1128/AEM.02429-10. Epub 2011 Mar 11.
3
Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression.
J Bacteriol. 2010 Oct;192(20):5454-64. doi: 10.1128/JB.00493-10. Epub 2010 Aug 13.
5
Genome-wide transcriptome analyses of the 'Knallgas' bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism.
Microbiology (Reading). 2010 Jul;156(Pt 7):2136-2152. doi: 10.1099/mic.0.038380-0. Epub 2010 Apr 15.
8
Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors.
Bioresour Technol. 2008 Oct;99(15):6844-51. doi: 10.1016/j.biortech.2008.01.051. Epub 2008 Mar 5.
9
Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16.
Nat Biotechnol. 2006 Oct;24(10):1257-62. doi: 10.1038/nbt1244. Epub 2006 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验