Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, 6709PG Wageningen, The Netherlands.
Genetics. 2010 Nov;186(3):1013-28. doi: 10.1534/genetics.110.120493. Epub 2010 Aug 16.
Social interactions among individuals are abundant both in natural and domestic populations. Such social interactions cause phenotypes of individuals to depend on genes carried by other individuals, a phenomenon known as indirect genetic effects (IGE). Because IGEs have drastic effects on the rate and direction of response to selection, knowledge of their magnitude and relationship to direct genetic effects (DGE) is indispensable for understanding response to selection. Very little is known, however, of statistical power and optimum experimental designs for estimating IGEs. This work, therefore, presents expressions for the standard errors of the estimated (co)variances of DGEs and IGEs and identifies optimum experimental designs for their estimation. It also provides an expression for optimum family size and a numerical investigation of optimum group size. Designs with groups composed of two families were optimal and substantially better than designs with groups composed at random with respect to family. Results suggest that IGEs can be detected with ∼1000-2000 individuals and/or ∼250-500 groups when using optimum designs. Those values appear feasible for agriculture and aquaculture and for the smaller laboratory species. In summary, this work provides the tools to optimize and quantify the required size of experiments aiming to identify IGEs. An R-package SE.IGE is available, which predicts SEs and identifies optimum family and group sizes.
个体之间的社会相互作用在自然和家养群体中都很丰富。这种社会相互作用导致个体的表型取决于其他个体携带的基因,这种现象被称为间接遗传效应(IGE)。由于 IGE 对选择反应的速度和方向有很大的影响,因此了解其大小及其与直接遗传效应(DGE)的关系对于理解选择反应是必不可少的。然而,对于估计 IGE 的统计能力和最优实验设计知之甚少。因此,这项工作提出了估计 DGE 和 IGE 的(协)方差的标准误差的表达式,并确定了它们的最优实验设计。它还提供了最佳家庭规模的表达式和最佳群体规模的数值研究。由两个家庭组成的群体的设计是最优的,并且相对于随机组成的群体的设计要好得多。结果表明,使用最优设计时,可以使用约 1000-2000 个个体和/或约 250-500 个群体来检测 IGE。这些值对于农业和水产养殖以及较小的实验室物种来说似乎是可行的。总之,这项工作提供了优化和量化旨在识别 IGE 的实验所需规模的工具。可用的 R 包 SE.IGE 可以预测 SE 并确定最佳的家庭和群体规模。