Suppr超能文献

基于交叉累积剩余熵的非刚性多模态图像配准

Non-Rigid Multi-Modal Image Registration Using Cross-Cumulative Residual Entropy.

作者信息

Wang Fei, Vemuri Baba C

机构信息

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.

出版信息

Int J Comput Vis. 2007 Aug 1;74(2):201-215. doi: 10.1007/s11263-006-0011-2.

Abstract

In this paper we present a new approach for the non-rigid registration of multi-modality images. Our approach is based on an information theoretic measure called the cumulative residual entropy (CRE), which is a measure of entropy defined using cumulative distributions. Cross-CRE between two images to be registered is defined and maximized over the space of smooth and unknown non-rigid transformations. For efficient and robust computation of the non-rigid deformations, a tri-cubic B-spline based representation of the deformation function is used. The key strengths of combining CCRE with the tri-cubic B-spline representation in addressing the non-rigid registration problem are that, not only do we achieve the robustness due to the nature of the CCRE measure, we also achieve computational efficiency in estimating the non-rigid registration. The salient features of our algorithm are: (i) it accommodates images to be registered of varying contrast+brightness, (ii) faster convergence speed compared to other information theory-based measures used for non-rigid registration in literature, (iii) analytic computation of the gradient of CCRE with respect to the non-rigid registration parameters to achieve efficient and accurate registration, (iv) it is well suited for situations where the source and the target images have field of views with large non-overlapping regions. We demonstrate these strengths via experiments on synthesized and real image data.

摘要

在本文中,我们提出了一种用于多模态图像非刚性配准的新方法。我们的方法基于一种称为累积残余熵(CRE)的信息论度量,它是一种使用累积分布定义的熵度量。定义了要配准的两幅图像之间的交叉累积残余熵(Cross-CRE),并在平滑且未知的非刚性变换空间上使其最大化。为了高效且稳健地计算非刚性变形,使用了基于三立方B样条的变形函数表示。在解决非刚性配准问题时,将交叉累积残余熵与三立方B样条表示相结合的关键优势在于,我们不仅由于交叉累积残余熵度量的性质而实现了稳健性,还在估计非刚性配准时实现了计算效率。我们算法的显著特点包括:(i)它适用于对比度和亮度不同的待配准图像;(ii)与文献中用于非刚性配准的其他基于信息论的度量相比,收敛速度更快;(iii)对交叉累积残余熵相对于非刚性配准参数进行解析计算,以实现高效且准确的配准;(iv)它非常适合源图像和目标图像具有大的非重叠区域视场的情况。我们通过对合成图像数据和真实图像数据进行实验来展示这些优势。

相似文献

引用本文的文献

3
Entropy analysis of human death uncertainty.人类死亡不确定性的熵分析。
Nonlinear Dyn. 2021;104(4):3897-3911. doi: 10.1007/s11071-021-06503-2. Epub 2021 May 21.

本文引用的文献

1
The role of image registration in brain mapping.图像配准在脑图谱绘制中的作用。
Image Vis Comput. 2001 Jan 1;19(1-2):3-24. doi: 10.1016/S0262-8856(00)00055-X.
3
Simultaneous nonrigid registration of multiple point sets and atlas construction.多点集的同步非刚性配准与图谱构建
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):2011-22. doi: 10.1109/TPAMI.2007.70829.
4
Deformable templates using large deformation kinematics.使用大变形运动学的可变形模板。
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
7
Transitive inverse-consistent manifold registration.传递逆一致流形配准
Inf Process Med Imaging. 2005;19:468-79. doi: 10.1007/11505730_39.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验