Suppr超能文献

基于最大似然法的电子断层数据分类。

Maximum likelihood based classification of electron tomographic data.

机构信息

Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.

出版信息

J Struct Biol. 2011 Jan;173(1):77-85. doi: 10.1016/j.jsb.2010.08.005. Epub 2010 Aug 16.

Abstract

Classification and averaging of sub-tomograms can improve the fidelity and resolution of structures obtained by electron tomography. Here we present a three-dimensional (3D) maximum likelihood algorithm--MLTOMO--which is characterized by integrating 3D alignment and classification into a single, unified processing step. The novelty of our approach lies in the way we calculate the probability of observing an individual sub-tomogram for a given reference structure. We assume that the reference structure is affected by a 'compound wedge', resulting from the summation of many individual missing wedges in distinct orientations. The distance metric underlying our probability calculations effectively down-weights Fourier components that are observed less frequently. Simulations demonstrate that MLTOMO clearly outperforms the 'constrained correlation' approach and has advantages over existing approaches in cases where the sub-tomograms adopt preferred orientations. Application of our approach to cryo-electron tomographic data of ice-embedded thermosomes revealed distinct conformations that are in good agreement with results obtained by previous single particle studies.

摘要

亚断层的分类和平均化可以提高电子断层扫描获得的结构的保真度和分辨率。在这里,我们提出了一种三维(3D)最大似然算法--MLTOMO--其特点是将 3D 对准和分类集成到单个统一的处理步骤中。我们方法的新颖之处在于我们计算给定参考结构的单个亚断层的观察概率的方式。我们假设参考结构受到“复合楔形物”的影响,这是由许多不同方向的单个缺失楔形物的总和引起的。我们概率计算的基础距离度量有效地降低了观察到的较少的傅立叶分量的权重。模拟表明,MLTOMO 明显优于“约束相关”方法,并且在亚断层采用优选取向的情况下,优于现有方法。我们的方法应用于冷冻电子断层扫描的冰嵌入热体数据揭示了与以前的单颗粒研究获得的结果一致的明显构象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验