Amari Research Unit, RIKEN, Brain Science Institute, Saitama, Japan.
J Neurophysiol. 2011 Jan;105(1):487-500. doi: 10.1152/jn.00858.2009. Epub 2010 Aug 18.
High firing irregularity is a hallmark of cortical neurons in vivo, and modeling studies suggest a balance of excitation and inhibition is necessary to explain this high irregularity. Such a balance must be generated, at least partly, from local interconnected networks of excitatory and inhibitory neurons, but the details of the local network structure are largely unknown. The dynamics of the neural activity depends on the local network structure; this in turn suggests the possibility of estimating network structure from the dynamics of the firing statistics. Here we report a new method to estimate properties of the local cortical network from the instantaneous firing rate and irregularity (CV(2)) under the assumption that recorded neurons are a part of a randomly connected sparse network. The firing irregularity, measured in monkey motor cortex, exhibits two features; many neurons show relatively stable firing irregularity in time and across different task conditions; the time-averaged CV(2) is widely distributed from quasi-regular to irregular (CV(2) = 0.3-1.0). For each recorded neuron, we estimate the three parameters of a local network [balance of local excitation-inhibition, number of recurrent connections per neuron, and excitatory postsynaptic potential (EPSP) size] that best describe the dynamics of the measured firing rates and irregularities. Our analysis shows that optimal parameter sets form a two-dimensional manifold in the three-dimensional parameter space that is confined for most of the neurons to the inhibition-dominated region. High irregularity neurons tend to be more strongly connected to the local network, either in terms of larger EPSP and inhibitory PSP size or larger number of recurrent connections, compared with the low irregularity neurons, for a given excitatory/inhibitory balance. Incorporating either synaptic short-term depression or conductance-based synapses leads many low CV(2) neurons to move to the excitation-dominated region as well as to an increase of EPSP size.
高发放不规则性是皮质神经元在体的特征,建模研究表明,兴奋和抑制的平衡对于解释这种高不规则性是必要的。这种平衡必须至少部分地由兴奋性和抑制性神经元的局部相互连接网络产生,但局部网络结构的细节在很大程度上是未知的。神经活动的动力学取决于局部网络结构;这反过来又暗示了从发放统计的动力学来估计网络结构的可能性。在这里,我们报告了一种从瞬时发放率和不规则性(CV(2))估计局部皮质网络特性的新方法,假设记录的神经元是随机连接稀疏网络的一部分。在猴子运动皮层中测量的不规则性表现出两个特征;许多神经元在时间和不同的任务条件下表现出相对稳定的发放不规则性;时间平均的 CV(2)从近乎规则到不规则(CV(2)=0.3-1.0)分布广泛。对于每个记录的神经元,我们估计了三个局部网络参数[局部兴奋-抑制平衡、每个神经元的回传连接数和兴奋性突触后电位(EPSP)大小],这些参数最能描述测量的发放率和不规则性的动力学。我们的分析表明,最优参数集在三维参数空间中形成二维流形,对于大多数神经元来说,该流形限制在抑制为主的区域。与低不规则性神经元相比,高不规则性神经元倾向于与局部网络更紧密地连接,无论是在更大的 EPSP 和抑制性 PSP 大小方面,还是在更大的回传连接数方面,对于给定的兴奋-抑制平衡。包含突触短期抑制或基于电导的突触会使许多低 CV(2)神经元移动到兴奋为主的区域,并增加 EPSP 大小。