Suppr超能文献

视觉运动速度变换用于平滑追踪眼球运动。

Visuomotor velocity transformations for smooth pursuit eye movements.

机构信息

Centre for Neuroscience Studies, Department of Physiology and Faculty of Arts and Science, Queen's University, Kingston, Ontario, Canada.

出版信息

J Neurophysiol. 2010 Oct;104(4):2103-15. doi: 10.1152/jn.00728.2009. Epub 2010 Aug 18.

Abstract

Smooth pursuit eye movements are driven by retinal motion signals. These retinal motion signals are converted into motor commands that obey Listing's law (i.e., no accumulation of ocular torsion). The fact that smooth pursuit follows Listing's law is often taken as evidence that no explicit reference frame transformation between the retinal velocity input and the head-centered motor command is required. Such eye-position-dependent reference frame transformations between eye- and head-centered coordinates have been well-described for saccades to static targets. Here we suggest that such an eye (and head)-position-dependent reference frame transformation is also required for target motion (i.e., velocity) driving smooth pursuit eye movements. Therefore we tested smooth pursuit initiation under different three-dimensional eye positions and compared human performance to model simulations. We specifically tested if the ocular rotation axis changed with vertical eye position, if the misalignment of the spatial and retinal axes during oblique fixations was taken into account, and if ocular torsion (due to head roll) was compensated for. If no eye-position-dependent velocity transformation was used, the pursuit initiation should follow the retinal direction, independently of eye position; in contrast, a correct visuomotor velocity transformation would result in spatially correct pursuit initiation. Overall subjects accounted for all three components of the visuomotor velocity transformation, but we did observe differences in the compensatory gains between individual subjects. We concluded that the brain does perform a visuomotor velocity transformation but that this transformation was prone to noise and inaccuracies of the internal model.

摘要

平滑追随眼球运动是由视网膜运动信号驱动的。这些视网膜运动信号被转化为遵循 Listing 法则的运动指令(即,眼扭转不会累积)。平滑追随遵循 Listing 法则这一事实通常被视为不需要在视网膜速度输入和以头为中心的运动指令之间进行明确的参考系转换的证据。在针对静态目标的扫视中,已经很好地描述了这种眼-和头-中心坐标之间的依赖于眼位的参考系转换。在这里,我们提出,对于目标运动(即速度)驱动的平滑追随眼球运动,也需要这种依赖于眼(和头)位的参考系转换。因此,我们测试了在不同的三维眼位下平滑追随的起始,并将人类表现与模型模拟进行了比较。我们特别测试了在垂直眼位时,眼球旋转轴是否会改变,在斜注视时,空间轴和视网膜轴是否存在失准,以及是否补偿了由于头部滚动引起的眼扭转。如果不使用依赖于眼位的速度转换,那么追随起始应该独立于眼位遵循视网膜方向;相反,如果进行了正确的视动速度转换,则会导致空间上正确的追随起始。总体而言,被试者考虑了视动速度转换的所有三个分量,但我们确实观察到了个体被试者之间的补偿增益差异。我们得出结论,大脑确实执行了视动速度转换,但该转换容易受到内部模型噪声和不准确性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验