Suppr超能文献

视网膜速度记忆为预期平滑追踪眼球运动方向提供依据。

Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements.

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.

出版信息

J Neurophysiol. 2013 Aug;110(3):732-47. doi: 10.1152/jn.00991.2012. Epub 2013 May 15.

Abstract

To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.

摘要

为了计算空间上准确的平滑追踪眼动,大脑同时使用视网膜运动和关于眼睛和头部在空间中的眼球运动和眼外信号(Blohm 和 Lefèvre 2010)。然而,当平滑眼动仅依赖于记忆中的目标速度时,例如在预期性追踪中,尚不清楚这种速度记忆是否也包括眼球运动和眼扭转等眼外信息。为了回答这个问题,我们使用了一种新颖的行为更新范式,参与者在五组试验中连续进行重复的、空间恒定的固定-缺口-斜坡刺激的追踪。在前四组试验中,参与者的头部向一侧倾斜,导致眼球反向滚动(OCR)。随着每次重复,参与者增加了他们的预期性追踪增益,表明速度记忆得到了强烈的编码。在第五组试验中,他们在追踪前将头部转向另一侧,这也导致了眼球扭转的变化。因此,为了实现空间上准确的预期性追踪,速度记忆必须在头部滚动和眼球扭转的变化中进行更新。我们通过观察这些信号变化对记忆解码(第五组)试验的预期轨迹的影响,测试了速度记忆如何解释头部滚动和 OCR。我们发现,预期性追踪会根据头部滚动的变化进行更新;然而,我们没有观察到 OCR 补偿的证据,这表明速度记忆中没有眼球扭转信号。这表明记忆的方向分量必须通过视网膜编码,并根据头部滚动的变化进行更新,而不是 OCR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验