Suppr超能文献

平稳眼动过程中空间(错误)定位的神经关联

Neural correlate of spatial (mis-)localization during smooth eye movements.

作者信息

Dowiasch Stefan, Blohm Gunnar, Bremmer Frank

机构信息

Department of Neurophysics, Philipps-University Marburg, Karl-von-Frisch-Straße 8a, 35043, Marburg, Germany.

Queen's University, Kingston, ON, Canada.

出版信息

Eur J Neurosci. 2016 Jul;44(2):1846-55. doi: 10.1111/ejn.13276. Epub 2016 Jun 12.

Abstract

The dependence of neuronal discharge on the position of the eyes in the orbit is a functional characteristic of many visual cortical areas of the macaque. It has been suggested that these eye-position signals provide relevant information for a coordinate transformation of visual signals into a non-eye-centered frame of reference. This transformation could be an integral part for achieving visual perceptual stability across eye movements. Previous studies demonstrated close to veridical eye-position decoding during stable fixation as well as characteristic erroneous decoding across saccadic eye-movements. Here we aimed to decode eye position during smooth pursuit. We recorded neural activity in macaque area VIP during steady fixation, saccades and smooth-pursuit and investigated the temporal and spatial accuracy of eye position as decoded from the neuronal discharges. Confirming previous results, the activity of the majority of neurons depended linearly on horizontal and vertical eye position. The application of a previously introduced computational approach (isofrequency decoding) allowed eye position decoding with considerable accuracy during steady fixation. We applied the same decoder on the activity of the same neurons during smooth-pursuit. On average, the decoded signal was leading the current eye position. A model combining this constant lead of the decoded eye position with a previously described attentional bias ahead of the pursuit target describes the asymmetric mislocalization pattern for briefly flashed stimuli during smooth pursuit eye movements as found in human behavioral studies.

摘要

神经元放电对眼睛在眼眶中位置的依赖性是猕猴许多视觉皮层区域的一个功能特征。有人提出,这些眼位信号为将视觉信号转换为非眼中心参考系提供了相关信息。这种转换可能是实现眼动过程中视觉感知稳定性的一个组成部分。先前的研究表明,在稳定注视期间能实现近乎真实的眼位解码,以及在扫视眼动过程中存在特征性的错误解码。在这里,我们旨在解码平稳跟踪过程中的眼位。我们记录了猕猴VIP区在稳定注视、扫视和平稳跟踪期间的神经活动,并研究了从神经元放电中解码出的眼位的时间和空间准确性。与先前结果一致,大多数神经元的活动在水平和垂直眼位上呈线性依赖。应用先前引入的一种计算方法(等频率解码),在稳定注视期间能够以相当高的准确性进行眼位解码。我们将相同的解码器应用于平稳跟踪期间相同神经元的活动。平均而言,解码信号领先于当前眼位。一个将解码眼位的这种恒定领先与先前描述的在跟踪目标之前的注意力偏差相结合的模型,描述了人类行为研究中发现的平稳跟踪眼动期间短暂闪现刺激的不对称错误定位模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89b0/5089592/bad0c6198ca4/EJN-44-1846-g001.jpg

相似文献

1
Neural correlate of spatial (mis-)localization during smooth eye movements.
Eur J Neurosci. 2016 Jul;44(2):1846-55. doi: 10.1111/ejn.13276. Epub 2016 Jun 12.
4
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
J Neurophysiol. 1996 Dec;76(6):3617-32. doi: 10.1152/jn.1996.76.6.3617.
5
Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
Eur J Neurosci. 2005 Jul;22(2):448-64. doi: 10.1111/j.1460-9568.2005.04215.x.
6
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation.
J Neurosci. 2019 Apr 3;39(14):2709-2721. doi: 10.1523/JNEUROSCI.2178-18.2019. Epub 2019 Feb 1.
7
Common inhibitory mechanism for saccades and smooth-pursuit eye movements.
J Neurophysiol. 2002 Oct;88(4):1880-92. doi: 10.1152/jn.2002.88.4.1880.
8
Dynamics of eye-position signals in the dorsal visual system.
Curr Biol. 2012 Feb 7;22(3):173-9. doi: 10.1016/j.cub.2011.12.032. Epub 2012 Jan 5.
9
Eye position signals in the dorsal pulvinar during fixation and goal-directed saccades.
J Neurophysiol. 2020 Jan 1;123(1):367-391. doi: 10.1152/jn.00432.2019. Epub 2019 Nov 20.

引用本文的文献

1
Spatial localization during open-loop smooth pursuit.
Front Neurosci. 2023 Feb 2;17:1058340. doi: 10.3389/fnins.2023.1058340. eCollection 2023.
3
Predicted Position Error Triggers Catch-Up Saccades during Sustained Smooth Pursuit.
eNeuro. 2020 Jan 15;7(1). doi: 10.1523/ENEURO.0196-18.2019. Print 2020 Jan/Feb.
4
Quantitative comparison of a mobile and a stationary video-based eye-tracker.
Behav Res Methods. 2020 Apr;52(2):667-680. doi: 10.3758/s13428-019-01267-5.
5
A Stable Visual World in Primate Primary Visual Cortex.
Curr Biol. 2019 May 6;29(9):1471-1480.e6. doi: 10.1016/j.cub.2019.03.069. Epub 2019 Apr 25.
6
Heading representations in primates are compressed by saccades.
Nat Commun. 2017 Oct 13;8(1):920. doi: 10.1038/s41467-017-01021-5.

本文引用的文献

1
Computations underlying the visuomotor transformation for smooth pursuit eye movements.
J Neurophysiol. 2015 Mar 1;113(5):1377-99. doi: 10.1152/jn.00273.2014. Epub 2014 Dec 4.
2
Multisensory maps in parietal cortex.
Curr Opin Neurobiol. 2014 Feb;24(1):39-46. doi: 10.1016/j.conb.2013.08.014. Epub 2013 Oct 2.
3
Eye-position signals in the dorsal visual system are accurate and precise on short timescales.
J Neurosci. 2013 Jul 24;33(30):12395-406. doi: 10.1523/JNEUROSCI.0576-13.2013.
5
Simulating the cortical 3D visuomotor transformation of reach depth.
PLoS One. 2012;7(7):e41241. doi: 10.1371/journal.pone.0041241. Epub 2012 Jul 16.
6
Dynamics of eye-position signals in the dorsal visual system.
Curr Biol. 2012 Feb 7;22(3):173-9. doi: 10.1016/j.cub.2011.12.032. Epub 2012 Jan 5.
7
The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex.
J Neurophysiol. 2011 Jul;106(1):71-7. doi: 10.1152/jn.00668.2010. Epub 2011 Feb 23.
8
Focused visual attention distorts distance perception away from the attentional locus.
Neuropsychologia. 2011 Feb;49(3):535-45. doi: 10.1016/j.neuropsychologia.2010.12.008. Epub 2010 Dec 13.
9
The default allocation of attention is broadly ahead of smooth pursuit.
J Vis. 2010 Nov 11;10(13):7. doi: 10.1167/10.13.7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验