Department of Pharmacology, University of Tartu, Tartu, Estonia.
Neuropsychopharmacology. 2010 Nov;35(12):2450-61. doi: 10.1038/npp.2010.128. Epub 2010 Aug 18.
The behavioral sensitization produced by repeated cocaine treatment represents the neural adaptations underlying some of the features of addiction in humans. Cocaine administrations induce neural adaptations through regulation of gene expression. Several studies suggest that epigenetic modifications, including DNA methylation, are the critical regulators of gene expression in the adult central nervous system. DNA methylation is catalyzed by DNA methyltransferases (DNMTs) and consequent promoter region hypermethylation is associated with transcriptional silencing. In this study a potential role for DNA methylation in a cocaine-induced behavioral sensitization model in mice was explored. We report that acute cocaine treatment caused an upregulation of DNMT3A and DNMT3B gene expression in the nucleus accumbens (NAc). Using methylated DNA immunoprecipitation, DNA bisulfite modification, and chromatin immunoprecipitation assays, we observed that cocaine treatment resulted in DNA hypermethylation and increased binding of methyl CpG binding protein 2 (MeCP2) at the protein phosphatase-1 catalytic subunit (PP1c) promoter. These changes are associated with transcriptional downregulation of PP1c in NAc. In contrast, acute and repeated cocaine administrations induced hypomethylation and decreased binding of MeCP2 at the fosB promoter, and these are associated with transcriptional upregulation of fosB in NAc. We also found that pharmacological inhibition of DNMT by zebularine treatment decreased cocaine-induced DNA hypermethylation at the PP1c promoter and attenuated PP1c mRNA downregulation in NAc. Finally, zebularine and cocaine co-treatment delayed the development of cocaine-induced behavioral sensitization. Together, these results suggest that dynamic changes of DNA methylation may be an important gene regulation mechanism underlying cocaine-induced behavioral sensitization.
重复可卡因处理产生的行为敏化反应代表了人类成瘾某些特征的神经适应。可卡因给药通过调节基因表达诱导神经适应。几项研究表明,表观遗传修饰,包括 DNA 甲基化,是成年中枢神经系统中基因表达的关键调节因子。DNA 甲基化由 DNA 甲基转移酶 (DNMTs) 催化,随后启动子区域的超甲基化与转录沉默有关。在这项研究中,探索了 DNA 甲基化在可卡因诱导的小鼠行为敏化模型中的潜在作用。我们报告说,急性可卡因处理导致伏隔核 (NAc) 中 DNMT3A 和 DNMT3B 基因表达上调。通过使用甲基化 DNA 免疫沉淀、DNA 亚硫酸氢盐修饰和染色质免疫沉淀分析,我们观察到可卡因处理导致 DNA 超甲基化和甲基 CpG 结合蛋白 2 (MeCP2) 在蛋白磷酸酶-1 催化亚基 (PP1c) 启动子处的结合增加。这些变化与 NAc 中 PP1c 的转录下调有关。相比之下,急性和重复可卡因给药诱导 fosB 启动子处的低甲基化和 MeCP2 结合减少,这与 NAc 中 fosB 的转录上调有关。我们还发现,通过 zebularine 处理抑制 DNMT 的药理作用可降低可卡因诱导的 PP1c 启动子处的 DNA 超甲基化,并减弱 NAc 中 PP1c mRNA 的下调。最后,zebularine 和可卡因共同处理延迟了可卡因诱导的行为敏化的发展。总之,这些结果表明,DNA 甲基化的动态变化可能是可卡因诱导的行为敏化的重要基因调控机制。