Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio s/n, Valencia, Spain.
OMICS. 2010 Dec;14(6):619-27. doi: 10.1089/omi.2010.0046. Epub 2010 Aug 20.
Osmostress triggers profound adaptive changes in the physiology of the cell with a great impact on gene expression. Saccharomyces cerevisiae has served as an instructive model system to unravel the complexity of the stress response at the transcriptional level. The main signal transduction pathways like the HOG (high osmolarity glycerol) MAP kinase cascade or the protein kinase A pathway regulate multiple specific transcription factors to accomplish large changes in the expression pattern of the genome. Transcription profiling and proteomic studies give us an idea about the impact of osmostress on gene expression and the overall protein composition. Recent genome wide location studies for several transcription factors and signaling kinases involved in the transcriptional stress response shed light on the genomic organization of the osmostress response at the level of the dynamic association of regulators with chromatin. Finally, global surveys of mRNA stability complete our picture of the mechanisms underlying the massive reprogramming of global gene expression, which leads to efficient adaptation to osmotic stress.
渗透胁迫会引发细胞生理学的深刻适应性变化,对基因表达产生重大影响。酿酒酵母已被用作阐明转录水平上应激反应复杂性的指导模型系统。主要的信号转导途径,如 HOG(高渗透压甘油)MAP 激酶级联或蛋白激酶 A 途径,调节多个特定的转录因子,以实现基因组表达模式的巨大变化。转录谱和蛋白质组学研究使我们了解渗透胁迫对基因表达和整体蛋白质组成的影响。最近对参与转录应激反应的几个转录因子和信号激酶的全基因组定位研究揭示了在动态调节因子与染色质相互作用的水平上,渗透胁迫反应的基因组组织。最后,对 mRNA 稳定性的全面调查完成了我们对大规模重编程全局基因表达的机制的了解,这导致了对渗透胁迫的有效适应。