Suppr超能文献

虫草素生产过程中盐处理的转录组学响应

Transcriptomic Responses of to Salt Treatment During Cordycepins Production.

作者信息

Lv Gongbo, Zhu Yue, Cheng Xiaojie, Cao Yan, Zeng Bin, Liu Xinping, He Bin

机构信息

Jiangxi Key Laboratory of Bioprocess Engineering and Co-innovation Center for in-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.

College of Life Sciences, Sichuan Normal University, Chengdu, China.

出版信息

Front Nutr. 2021 Dec 23;8:793795. doi: 10.3389/fnut.2021.793795. eCollection 2021.

Abstract

Cordycepin is a major bioactive compound found in () that exhibits a broad spectrum of biological activities. Hence, it is potentially a bioactive ingredient of pharmaceutical and cosmetic products. However, overexploitation and low productivity of natural is a barrier to commercialization, which leads to insufficient supply to meet its existing market demands. In this study, a preliminary study of distinct concentrations of salt treatments toward was conducted. Although the growth of was inhibited by different salt treatments, the cordycepin production increased significantly accompanied by the increment of salt concentration. Among them, the content of cordycepin in the 7% salt-treated group was five-fold higher than that of the control group. Further transcriptome analysis of samples with four salt concentrations, coupled with Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, several differentially expressed genes (DEGs) were found. Finally, dynamic changes of the expression patterns of four genes involved in the cordycepin biosynthesis pathway were observed by the quantitative real-time PCR. Taken together, our study provides a global transcriptome characterization of the salt treatment adaptation process in and facilitates the construction of industrial strains with a high cordycepin production and salt tolerance.

摘要

虫草素是在()中发现的一种主要生物活性化合物,具有广泛的生物活性。因此,它有可能成为药品和化妆品的生物活性成分。然而,天然()的过度开发和低产量是商业化的障碍,导致供应不足,无法满足现有市场需求。在本研究中,对不同浓度盐处理()进行了初步研究。虽然不同盐处理抑制了()的生长,但虫草素产量随着盐浓度的增加而显著增加。其中,7%盐处理组的虫草素含量比对照组高五倍。对四个盐浓度样本进行进一步的转录组分析,并结合基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路富集分析,发现了几个差异表达基因(DEGs)。最后,通过定量实时PCR观察了虫草素生物合成途径中四个基因表达模式的动态变化。综上所述,我们的研究提供了()盐处理适应过程的全局转录组特征,并有助于构建具有高虫草素产量和耐盐性的工业菌株。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ea0/8733472/83c344a9578d/fnut-08-793795-g0001.jpg

相似文献

1
Transcriptomic Responses of to Salt Treatment During Cordycepins Production.
Front Nutr. 2021 Dec 23;8:793795. doi: 10.3389/fnut.2021.793795. eCollection 2021.
2
A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris.
Int Microbiol. 2024 Aug;27(4):1009-1021. doi: 10.1007/s10123-023-00448-9. Epub 2023 Nov 21.
3
Genomic and Transcriptome Analysis Reveals the Biosynthesis Network of Cordycepin in .
Genes (Basel). 2024 May 15;15(5):626. doi: 10.3390/genes15050626.
4
Characterization of Newly Bred Strains for Higher Production of Cordycepin through HPLC and URP-PCR Analysis.
J Microbiol Biotechnol. 2017 Jul 28;27(7):1223-1232. doi: 10.4014/jmb.1701.01043.
5
Transcriptome Analysis of Reveals Genes Associated With Carotenoid Synthesis and Identification of the Function of the Gene.
Front Microbiol. 2019 Sep 10;10:2105. doi: 10.3389/fmicb.2019.02105. eCollection 2019.
7
Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris.
PLoS One. 2012;7(12):e51853. doi: 10.1371/journal.pone.0051853. Epub 2012 Dec 14.
8
Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in .
Bioengineering (Basel). 2022 Feb 11;9(2):69. doi: 10.3390/bioengineering9020069.
9
[Advances in biosynthesis of cordycepin from Cordyceps militaris].
Sheng Wu Gong Cheng Xue Bao. 2020 Jul 25;36(7):1293-1304. doi: 10.13345/j.cjb.190500.

引用本文的文献

2
The role and mechanisms of cordycepin in inhibiting cancer cells.
Braz J Med Biol Res. 2024 Aug 23;57:e13889. doi: 10.1590/1414-431X2024e13889. eCollection 2024.
5
Light regulation of secondary metabolism in fungi.
J Biol Eng. 2023 Aug 31;17(1):57. doi: 10.1186/s13036-023-00374-4.
6
Molecular regulation of fungal secondary metabolism.
World J Microbiol Biotechnol. 2023 May 20;39(8):204. doi: 10.1007/s11274-023-03649-6.
7
Transcriptome and metabolome profiling unveils the mechanisms of naphthalene acetic acid in promoting cordycepin synthesis in .
Front Nutr. 2023 Feb 16;10:1104446. doi: 10.3389/fnut.2023.1104446. eCollection 2023.

本文引用的文献

1
Improvement of cordycepin production by an isolated Paecilomyces hepiali mutant from combinatorial mutation breeding and medium screening.
Bioprocess Biosyst Eng. 2021 Nov;44(11):2387-2398. doi: 10.1007/s00449-021-02611-w. Epub 2021 Jul 15.
2
Enhanced production of cordycepin in using growth supplements under submerged conditions.
Biotechnol Rep (Amst). 2020 Nov 10;28:e00557. doi: 10.1016/j.btre.2020.e00557. eCollection 2020 Dec.
5
Transcriptome Analysis Reveals the Flexibility of Cordycepin Network in Activated by L-Alanine Addition.
Front Microbiol. 2020 Apr 24;11:577. doi: 10.3389/fmicb.2020.00577. eCollection 2020.
6
Improved Cordycepin Production by KYL05 Using Casein Hydrolysate in Submerged Conditions.
Biomolecules. 2019 Sep 7;9(9):461. doi: 10.3390/biom9090461.
7
Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies.
Appl Microbiol Biotechnol. 2019 Feb;103(4):1681-1691. doi: 10.1007/s00253-019-09623-3. Epub 2019 Jan 15.
8
Heterologous expression of AoD9D enhances salt tolerance with increased accumulation of unsaturated fatty acid in transgenic Saccharomyces cerevisiae.
J Ind Microbiol Biotechnol. 2019 Feb;46(2):231-239. doi: 10.1007/s10295-018-02123-9. Epub 2019 Jan 2.
9
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验