Suppr超能文献

使用合理的群组规模来传达有关医疗风险的信息。

Using plausible group sizes to communicate information about medical risks.

机构信息

Center for Adaptive Behavior and Cognition, Max Planck Institute for Human Development, Berlin, Germany.

出版信息

Patient Educ Couns. 2011 Aug;84(2):245-50. doi: 10.1016/j.pec.2010.07.027. Epub 2010 Aug 21.

Abstract

OBJECTIVE

To make informed health decisions, patients must understand and recall risks, which often involve ratios with large denominators. Grasping the meaning of such numbers may be difficult, because of limited exposure to large groups of people in either our evolutionary history or daily life.

METHODS

In an experiment (n=98), we investigated whether medical risks are easier to understand and recall if their representation is based on small, evolutionarily plausible groups of people, and whether this representation especially helps patients with low numeracy.

RESULTS

Participants-especially those with low numeracy-often disregarded and incorrectly recalled denominators of ratios representing medical risks when the denominators involved were large. Risks were easier to understand and recall if their representation was based on smaller, evolutionarily plausible groups of people.

CONCLUSIONS

Our results extend previous literature on the role of numeracy in understanding health-relevant risk communications by showing the importance of using plausible group sizes to communicate these risks to people with low numeracy. Our results also support the notion that problems in risk perception occur because of inappropriate presentation formats rather than cognitive biases.

PRACTICE IMPLICATIONS

Our findings suggest suitable ways to communicate quantitative medical data-especially to people with low numeracy.

摘要

目的

为了做出明智的健康决策,患者必须理解并记住风险,而这些风险通常涉及到分母较大的比率。由于在进化史或日常生活中,我们很少接触到大量的人,因此理解这些数字的含义可能很困难。

方法

在一项实验(n=98)中,我们研究了如果基于小的、进化上合理的人群来表示医学风险,是否更容易理解和记住这些风险,以及这种表示方式是否特别有助于计算能力较低的患者。

结果

参与者——尤其是计算能力较低的参与者——在涉及较大分母的情况下,经常忽略和错误地回忆起代表医疗风险的比率的分母。如果表示风险的分母较小且基于合理的进化人群,则风险更容易理解和记住。

结论

我们的结果通过显示使用合理的群体大小向计算能力较低的人传达这些风险的重要性,扩展了关于计算能力在理解与健康相关的风险沟通中的作用的先前文献。我们的结果还支持这样一种观点,即风险感知问题是由于不适当的表示格式而不是认知偏差引起的。

实践意义

我们的发现为沟通定量医学数据提供了合适的方法——特别是针对计算能力较低的人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验