Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan.
Nat Chem. 2010 Sep;2(9):756-9. doi: 10.1038/nchem.731. Epub 2010 Jul 11.
Critical biological electron-transfer processes involving high-valent oxometal chemistry occur widely, for example in haem proteins [oxoiron(IV); Fe(IV)(O)] and in photosystem II. Photosystem II involves Ca(2+) as well as high-valent oxomanganese cluster species. However, there is no example of an interaction between metal ions and oxoiron(IV) complexes. Here, we report new findings concerning the binding of the redox-inactive metal ions Ca(2+) and Sc(3+) to a non-haem oxoiron(IV) complex, (TMC)Fe(IV)(O) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). As determined by X-ray diffraction analysis, an oxo-Sc(3+) interaction leads to a structural distortion of the oxoiron(IV) moiety. More importantly, this interaction facilitates a two-electron reduction by ferrocene, whereas only a one-electron reduction process occurs without the metal ions. This control of redox behaviour provides valuable mechanistic insights into oxometal redox chemistry, and suggests a possible key role that an auxiliary Lewis acid metal ion could play in nature, as in photosystem II.
广泛存在涉及高价氧合金属化学的关键生物电子转移过程,例如在血红素蛋白[氧代铁(IV);Fe(IV)(O)]和光系统 II 中。光系统 II 涉及 Ca(2+)以及高价氧合锰簇物种。然而,没有金属离子与氧代铁(IV)配合物相互作用的例子。在这里,我们报告了关于氧化还原非活性金属离子 Ca(2+)和 Sc(3+)与非血红素氧代铁(IV)配合物[(TMC)Fe(IV)(O)](2+)(TMC = 1,4,8,11-四甲基-1,4,8,11-四氮杂环十四烷)结合的新发现。通过 X 射线衍射分析确定,氧代 Sc(3+)相互作用导致氧代铁(IV)部分的结构变形。更重要的是,这种相互作用促进了二价铁的两电子还原,而没有金属离子时只发生一电子还原过程。这种对氧化还原行为的控制为氧合金属氧化还原化学提供了有价值的机制见解,并表明辅助路易斯酸金属离子可能在自然界中发挥关键作用,就像在光系统 II 中一样。