Suppr超能文献

光系统II中水分裂催化循环的量子力学/分子力学研究

Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.

作者信息

Sproviero Eduardo M, Gascón José A, McEvoy James P, Brudvig Gary W, Batista Victor S

机构信息

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA.

出版信息

J Am Chem Soc. 2008 Mar 19;130(11):3428-42. doi: 10.1021/ja076130q. Epub 2008 Feb 22.

Abstract

This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of calcium.

摘要

本文研究了光系统II(PSII)中析水的机制,该机制由处于S0 - S4状态的放氧复合体(OEC)的化学敏感模型描述。由于该反应由太阳光驱动且催化剂包含廉价且丰富的金属(钙和锰),因此它是工程化直接太阳能燃料生产系统的范例。根据最新的量子力学/分子力学(QM/MM)混合方法,并结合来自嗜热栖热放线菌的PSII的X射线衍射(XRD)结构,通过明确考虑周围蛋白质环境的微扰影响,构建了OEC Mn3CaO4Mn催化簇的分子模型。通过与高分辨率扩展X射线吸收精细结构光谱数据直接比较,对所得模型进行了验证。S3、S4和S0状态的结构在Mn(3)和Mn(4)之间包括一个额外的μ-氧桥,这在XRD结构中不存在,发现其对于底物水分子的去质子化至关重要。反应中间体的结构基于氧化和质子化状态的变化以及氧锰簇和周围水分子的结构重排,提出了详细的双氧进化机制。催化反应与作为末端配体与Mn(4)和钙配位的底物水分子一致,并且需要通过与Mn(4)配位的底物水分子的去质子化形成一个氧自由基以及积累四个氧化当量。该氧自由基易受最初与钙配位并由两个碱性物种(包括CP43 - R357和Mn(3)与Mn(4)之间的μ-氧桥)激活的底物水分子的亲核攻击。该反应与水配体交换协同进行,用钙的第二配位层中的一个水分子交换被激活的水。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验