Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8575, USA.
J Proteome Res. 2010 Oct 1;9(10):5461-72. doi: 10.1021/pr1007015.
The complexity of cell and tissue proteomes presents one of the most significant technical challenges in proteomic biomarker discovery. Multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based shotgun proteomics can be coupled with selective enrichment of cysteinyl peptides (Cys-peptides) to reduce sample complexity and increase proteome coverage. Here we evaluated the impact of Cys-peptide enrichment on global proteomic inventories. We employed a new cleavable thiol-reactive biotinylating probe, N-(2-(2-(2-(2-(3-(1-hydroxy-2-oxo-2-phenylethyl)phenoxy)acetamido)ethoxy)-ethoxy)ethyl)-5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (IBB), to capture Cys-peptides after digestion. Treatment of tryptic digests with the IBB reagent followed by streptavidin capture and mild alkaline hydrolysis releases a highly purified population of Cys-peptides with a residual S-carboxymethyl tag. Isoelectric focusing (IEF) followed by LC-MS/MS of Cys-peptides significantly expanded proteome coverage in Saccharomyces cerevisiae (yeast) and in human colon carcinoma RKO cells. IBB-based fractionation enhanced detection of Cys-proteins in direct proportion to their cysteine content. The degree of enrichment typically was 2-8-fold but ranged up to almost 20-fold for a few proteins. Published copy number annotation for the yeast proteome enabled benchmarking of MS/MS spectral count data to yeast protein abundance and revealed selective enrichment of cysteine-rich, lower abundance proteins. Spectral count data further established this relationship in RKO cells. Enhanced detection of low abundance proteins was due to the chemoselectivity of Cys-peptide capture, rather than simplification of the peptide mixture through fractionation.
细胞和组织蛋白质组的复杂性是蛋白质组生物标志物发现中最具挑战性的技术难题之一。基于多维液相色谱-串联质谱(LC-MS/MS)的鸟枪法蛋白质组学可以与半胱氨酸肽(Cys-peptides)的选择性富集相结合,以降低样品复杂性并增加蛋白质组覆盖率。在这里,我们评估了 Cys-peptide 富集对全局蛋白质组学目录的影响。我们采用了一种新的可裂解的硫醇反应性生物素化探针 N-(2-(2-(2-(2-(3-(1-羟基-2-氧代-2-苯乙基)苯氧基)乙酰胺基)乙氧基)乙氧基)乙基)-5-(2-氧代六氢-1H-噻吩并[3,4-d]咪唑-4-基)戊酰胺(IBB),在消化后捕获 Cys-peptides。用 IBB 试剂处理胰蛋白酶消化物,然后用链霉亲和素捕获和温和的碱性水解,释放出高度纯化的 Cys-peptides 群体,带有残留的 S-羧甲基标签。等电聚焦(IEF)后,Cys-peptides 的 LC-MS/MS 显著扩展了酿酒酵母(酵母)和人结肠癌细胞 RKO 中的蛋白质组覆盖范围。基于 IBB 的分级分离与半胱氨酸含量成正比增强了 Cys-蛋白的检测。通常,富集程度为 2-8 倍,但对于少数蛋白质,范围高达近 20 倍。酵母蛋白质组的已发表拷贝数注释使 MS/MS 光谱计数数据与酵母蛋白质丰度的基准测试成为可能,并揭示了富含半胱氨酸、丰度较低的蛋白质的选择性富集。光谱计数数据在 RKO 细胞中进一步确立了这种关系。低丰度蛋白质的增强检测是由于 Cys-peptide 捕获的化学选择性,而不是通过分级分离简化肽混合物。
J Proteome Res. 2010-10-1
J Chromatogr B Analyt Technol Biomed Life Sci. 2015-1-1
Mol Cell Proteomics. 2011-12-20
Methods Mol Biol. 2015
Proteomics. 2017-3
Nat Protoc. 2015-7
J Am Soc Mass Spectrom. 2015-4
Free Radic Biol Med. 2015-3
Mol Cell Proteomics. 2009-10-26
Chem Res Toxicol. 2008-12
Anal Chem. 2008-10-1
Chem Res Toxicol. 2008-4
J Proteome Res. 2007-9