Suppr超能文献

基于心率变异性信号的非线性分析和谱及双谱特征预测阵发性心房颤动。

Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal.

机构信息

Biomedical Engineering Department, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Comput Methods Programs Biomed. 2012 Jan;105(1):40-9. doi: 10.1016/j.cmpb.2010.07.011. Epub 2010 Aug 21.

Abstract

In this paper, an effective paroxysmal atrial fibrillation (PAF) prediction algorithm is presented, which is based on analysis of the heart rate variability (HRV) signal. The proposed method consists of a preprocessing step for QRS detection and HRV signal extraction. In the next step, several features which can be used as markers for the prediction of PAF are extracted from the HRV signal. These features consist of spectrum features, bispectrum features, and non-linear features including sample entropy and Poincaré plot-extracted features. The spectrum features are able to discriminate the sympathetic and parasympathetic contents of the HRV signal, which are affected before PAF attacks. The bispectrum features are used in order to reveal information not presented on the spectral domain, and to detect quadratic phase coupled harmonics arising from non-linearities of the HRV signal. Moreover, the non-linear analysis can map the heart rate irregularities in the feature space and it leads to better understanding of the system dynamics before PAF attacks. In the final step, a support vector machine (SVM)-based classifier has been used for PAF prediction. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database (AFPDB). The obtained sensitivity, specificity, and positive predictivity were 96.30%, 93.10%, and 92.86%, respectively. The proposed methodology presents better results than the other existing approaches. The other important advantage of the proposed method when compared to the other approaches is that we do not need the both records of a subject to specify which episode preceding PAF events.

摘要

本文提出了一种基于心率变异性(HRV)信号分析的有效的阵发性心房颤动(PAF)预测算法。该方法包括 QRS 检测和 HRV 信号提取的预处理步骤。在下一个步骤中,从 HRV 信号中提取出几个可作为 PAF 预测标记的特征。这些特征包括频谱特征、双谱特征和非线性特征,包括样本熵和 Poincaré 图提取的特征。频谱特征能够区分 HRV 信号中的交感和副交感内容,这些内容在 PAF 发作前受到影响。双谱特征用于揭示频谱域中未呈现的信息,并检测 HRV 信号非线性产生的二次相位耦合谐波。此外,非线性分析可以在特征空间中映射心率不规则性,从而更好地理解 PAF 发作前的系统动力学。在最后一步中,使用基于支持向量机(SVM)的分类器进行 PAF 预测。使用心房颤动预测数据库(AFPDB)评估了所提出方法在预测 PAF 发作中的性能。所提出方法在预测 PAF 发作中的敏感性、特异性和阳性预测值分别为 96.30%、93.10%和 92.86%。与其他现有方法相比,所提出的方法具有更好的性能。与其他方法相比,所提出的方法的另一个重要优势是,我们不需要一个主体的两个记录来指定哪个 PAF 事件之前的发作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验