Suppr超能文献

使用新的心率变异性特征预测阵发性心房颤动。

Prediction of paroxysmal atrial fibrillation using new heart rate variability features.

机构信息

National University of Ireland (NUI) Galway, Galway, H91 TK33, Ireland.

出版信息

Comput Biol Med. 2021 Jun;133:104367. doi: 10.1016/j.compbiomed.2021.104367. Epub 2021 Apr 2.

Abstract

Paroxysmal atrial fibrillation (PAF) is a cardiac arrhythmia that can eventually lead to heart failure or stroke if left untreated. Early detection of PAF is therefore crucial to prevent any further complications and avoid fatalities. An implantable defibrillator device could be used to both detect and treat the condition though such devices have limited computational capability. With this constraint in mind, this paper presents a novel set of features to accurately predict the presence of PAF. The method is evaluated using ECG signals from the widely used atrial fibrillation prediction database (AFPDB) from PhysioNet. We analysed 106 signals from 53 pairs of ECG recordings. Each pair of signals contains one 5-min ECG segment that ends just before the onset of a PAF event and another 5-min ECG segment at least 45 min distant from the PAF event, to represent a non-PAF event. Seven novel features are extracted through the Poincaré representation of R-R interval signals, and are prioritised through feature ranking schemes. The features are used with four standard classification techniques for PAF prediction and compared to the existing state of the art from the literature. Using only the seven proposed features, classification performance outperforms those of the classical state-of-the-art feature set, registering sensitivity and specificity measurements of over 96%. The results further improve when the features are combined with several of the classical features, with an accuracy increasing to 98% using a linear kernel SVM. The results show that the proposed features provide a useful representation of the PAF condition and achieve good prediction with off-the-shelf classification techniques that would be suitable for ICU deployment.

摘要

阵发性心房颤动(PAF)是一种心律失常,如果不加以治疗,最终可能导致心力衰竭或中风。因此,早期发现 PAF 对于预防进一步的并发症和避免死亡至关重要。植入式除颤器设备可用于检测和治疗这种疾病,尽管这种设备的计算能力有限。考虑到这一限制,本文提出了一组新的特征来准确预测 PAF 的存在。该方法使用来自 PhysioNet 的广泛使用的心房颤动预测数据库(AFPDB)中的 ECG 信号进行评估。我们分析了来自 53 对 ECG 记录的 106 个信号。每对信号包含一个 5 分钟的 ECG 片段,该片段刚好在 PAF 事件发作之前结束,另一个 5 分钟的 ECG 片段距离 PAF 事件至少 45 分钟,以代表非 PAF 事件。通过 RR 间隔信号的 Poincaré 表示提取了七个新特征,并通过特征排名方案对其进行了优先级排序。这些特征用于四种标准的 PAF 预测分类技术,并与文献中的现有最新技术进行了比较。仅使用这七个提出的特征,分类性能优于经典的最新特征集,其敏感性和特异性测量值超过 96%。当特征与几个经典特征结合使用时,结果进一步提高,使用线性核 SVM 时准确性提高到 98%。结果表明,所提出的特征为 PAF 状况提供了有用的表示,并且使用现成的分类技术可以实现良好的预测,这些技术适合 ICU 部署。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验