Suppr超能文献

采用机械成像干涉测量法的高通量细胞纳米力学

High throughput cell nanomechanics with mechanical imaging interferometry.

作者信息

Reed Jason, Frank Matthew, Troke Joshua J, Schmit Joanna, Han Sen, Teitell Michael A, Gimzewski James K

机构信息

Department of Chemistry and Biochemistry, UCLA, 607 Charles Young Drive East, Los Angeles, CA 90095, USA.

出版信息

Nanotechnology. 2008 Jun 11;19(23):235101. doi: 10.1088/0957-4484/19/23/235101.

Abstract

The dynamic nanomechanical properties of a large number of cells (up to hundreds), measured in parallel with high throughput, are reported. Using NIH 3T3 and HEK 293T fibroblasts and actin depolymerizing drugs, we use a novel nanotechnology to quantify the local viscoelastic properties with applied forces of 20 pN-20 nN, a spatial resolution of <20 nm, and a mechanical dynamic range of several Pa up to ~200 kPa. Our approach utilizes imaging interferometry in combination with reflective, magnetic probes attached to cells. These results indicate that mechanical imaging interferometry is a sensitive and scalable technology for measuring the nanomechanical properties of large arrays of live cells in fluid.

摘要

本文报道了利用新型纳米技术,在高通量条件下并行测量大量细胞(多达数百个)的动态纳米力学特性。我们使用NIH 3T3和HEK 293T成纤维细胞以及肌动蛋白解聚药物,在20 pN至20 nN的作用力、小于20 nm的空间分辨率以及几帕至约200 kPa的力学动态范围内,对局部粘弹性特性进行量化。我们的方法将成像干涉测量法与附着在细胞上的反射磁性探针相结合。这些结果表明,机械成像干涉测量法是一种灵敏且可扩展的技术,可用于测量流体中大量活细胞的纳米力学特性。

相似文献

1
High throughput cell nanomechanics with mechanical imaging interferometry.
Nanotechnology. 2008 Jun 11;19(23):235101. doi: 10.1088/0957-4484/19/23/235101.
2
Mitochondrial displacements in response to nanomechanical forces.
J Mol Recognit. 2008 Jan-Feb;21(1):30-6. doi: 10.1002/jmr.868.
4
Live-cell super-resolved PAINT imaging of piconewton cellular traction forces.
Nat Methods. 2020 Oct;17(10):1018-1024. doi: 10.1038/s41592-020-0929-2. Epub 2020 Sep 14.
5
Nanomechanics of actin filament: A molecular dynamics simulation.
Cytoskeleton (Hoboken). 2018 Mar;75(3):118-130. doi: 10.1002/cm.21429. Epub 2018 Jan 23.
6
7
Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging.
ACS Nano. 2025 Jan 21;19(2):2651-2664. doi: 10.1021/acsnano.4c14578. Epub 2025 Jan 9.
8
Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy.
Nat Nanotechnol. 2011 Nov 13;6(12):809-14. doi: 10.1038/nnano.2011.186.
9
Quantification of intracellular mitochondrial displacements in response to nanomechanical forces.
Methods Mol Biol. 2013;991:185-93. doi: 10.1007/978-1-62703-336-7_18.
10
Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.
Adv Healthc Mater. 2015 Nov 18;4(16):2456-74. doi: 10.1002/adhm.201500229. Epub 2015 Jul 22.

引用本文的文献

1
Drug screening at single-organoid resolution via bioprinting and interferometry.
Nat Commun. 2023 Jun 6;14(1):3168. doi: 10.1038/s41467-023-38832-8.
2
Quantitative Phase Imaging: Recent Advances and Expanding Potential in Biomedicine.
ACS Nano. 2022 Aug 23;16(8):11516-11544. doi: 10.1021/acsnano.1c11507. Epub 2022 Aug 2.
3
Optimal pulse length of insonification for Piezo1 activation and intracellular calcium response.
Sci Rep. 2021 Jan 12;11(1):709. doi: 10.1038/s41598-020-78553-2.
4
A high throughput array microscope for the mechanical characterization of biomaterials.
Rev Sci Instrum. 2015 Feb;86(2):023711. doi: 10.1063/1.4907705.
5
Dynamic 4-dimensional microscope system with automated background leveling.
Proc SPIE Int Soc Opt Eng. 2012 Sep 13;8493:84930N. doi: 10.1117/12.929338.
6
Dynamic phase imaging utilizing a 4-dimensional microscope system.
Proc SPIE Int Soc Opt Eng. 2011 Feb 21;7904:79040O-. doi: 10.1117/12.875928.
7
Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures.
Proc SPIE Int Soc Opt Eng. 2010 Aug 2;7782:77820B-. doi: 10.1117/12.864275.
8
Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions.
Biophys J. 2013 Jul 16;105(2):463-72. doi: 10.1016/j.bpj.2013.06.002.
9
Performance enhancement and background removal to improve dynamic phase imaging of biological organisms.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3163-6. doi: 10.1109/EMBC.2012.6346636.
10
Dynamic quantitative phase imaging for biological objects using a pixelated phase mask.
Biomed Opt Express. 2012 Nov 1;3(11):2866-80. doi: 10.1364/BOE.3.002866. Epub 2012 Oct 17.

本文引用的文献

1
Nanomechanical analysis of cells from cancer patients.
Nat Nanotechnol. 2007 Dec;2(12):780-3. doi: 10.1038/nnano.2007.388. Epub 2007 Dec 2.
2
Universal physical responses to stretch in the living cell.
Nature. 2007 May 31;447(7144):592-5. doi: 10.1038/nature05824.
3
Power laws in microrheology experiments on living cells: Comparative analysis and modeling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021911. doi: 10.1103/PhysRevE.74.021911. Epub 2006 Aug 9.
4
Bio-microrheology: a frontier in microrheology.
Biophys J. 2006 Dec 1;91(11):4296-305. doi: 10.1529/biophysj.106.081109. Epub 2006 Sep 8.
5
Linearity and time-scale invariance of the creep function in living cells.
J R Soc Interface. 2004 Nov 22;1(1):91-7. doi: 10.1098/rsif.2004.0010.
6
Mechanical models for living cells--a review.
J Biomech. 2006;39(2):195-216. doi: 10.1016/j.jbiomech.2004.12.008.
7
Tracking single particles: a user-friendly quantitative evaluation.
Phys Biol. 2005 Mar;2(1):60-72. doi: 10.1088/1478-3967/2/1/008.
8
Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence.
Biophys J. 2005 May;88(5):3689-98. doi: 10.1529/biophysj.104.045476. Epub 2005 Feb 18.
9
Creep function of a single living cell.
Biophys J. 2005 Mar;88(3):2224-33. doi: 10.1529/biophysj.104.050278. Epub 2004 Dec 13.
10
Activation of a signaling cascade by cytoskeleton stretch.
Dev Cell. 2004 Nov;7(5):709-18. doi: 10.1016/j.devcel.2004.08.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验