Birchall A J, Lane A N
National Institute for Medical Research, Mill Hill, London, United Kingdom.
Eur Biophys J. 1990;19(2):73-8. doi: 10.1007/BF00185089.
Proton-proton relaxation rate constants depend on the angle between the internuclear vector and the principal axis of rotation in symmetric top molecules. It is possible to determine to rotational correlation times of the equivalent ellipsoid for DNA fragments from a knowledge of the axial ratio and the cross-relaxation rate constant for the cytosine H6-H5 vectors. The cross-relaxation rate constants for the cytosine H6-H5 vectors have been measured in the 14-base-pair sequence dGCTGTTGACAATTA.dTAATTGTCAACAGC at four temperatures. The results, along with literature data for DNA fragments ranging from 6 to 20 base pairs can be accounted for by a simple hydrodynamic equation based on the formalism of Woessner (1962). The measured cross-relaxation rate constant is independent of position in the sequence and is consistent with the absence of large amplitude internal motions on the Larmor time scale. All the data can be described by a simple hydrodynamic model, which accounts for the rotational anisotropy of the DNA fragments and allows the correlation time for end-over-end tumbling to be determined if the approximate rise per base pair is known. This is the correlation time that dominates the spectral density functions for internucleotide vectors and is significantly different from that calculated for a sphere of the same hydrodynamic volume for fragments containing more than about 14 base pairs. This method therefore allows NOE intensities used for structure calculation of nucleic acids to be treated more rigorously.
质子-质子弛豫速率常数取决于对称陀螺分子中核间矢量与旋转主轴之间的夹角。根据轴向比和胞嘧啶H6-H5矢量的交叉弛豫速率常数,能够确定DNA片段等效椭球体的旋转相关时间。已在四个温度下测量了14个碱基对序列dGCTGTTGACAATTA.dTAATTGTCAACAGC中胞嘧啶H6-H5矢量的交叉弛豫速率常数。基于沃斯纳(1962年)的形式主义,一个简单的流体动力学方程可以解释这些结果以及6至20个碱基对的DNA片段的文献数据。测得的交叉弛豫速率常数与序列位置无关,并且与在拉莫尔时间尺度上不存在大幅度内部运动相一致。所有数据都可以用一个简单的流体动力学模型来描述,该模型考虑了DNA片段的旋转各向异性,并且如果已知每个碱基对的近似上升高度,就可以确定首尾翻滚的相关时间。这就是主导核苷酸间矢量谱密度函数的相关时间,并且与对于含有超过约14个碱基对的片段具有相同流体动力学体积的球体所计算出的相关时间显著不同。因此,这种方法能够更严格地处理用于核酸结构计算的核Overhauser效应(NOE)强度。