Research Center for Signals, Systems and Computational Intelligence, FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, (3000), Argentina
BMC Bioinformatics. 2010 Aug 26;11:438. doi: 10.1186/1471-2105-11-438.
modern biology uses experimental systems that involve the exploration of phenotypic variation as a result of the recombination of several genomes. Such systems are useful to investigate the functional evolution of metabolic networks. One such approach is the analysis of transcript and metabolite profiles. These kinds of studies generate a large amount of data, which require dedicated computational tools for their analysis.
this paper presents a novel software named *omeSOM (transcript/metabol-ome Self Organizing Map) that implements a neural model for biological data clustering and visualization. It allows the discovery of relationships between changes in transcripts and metabolites of crop plants harboring introgressed exotic alleles and furthermore, its use can be extended to other type of omics data. The software is focused on the easy identification of groups including different molecular entities, independently of the number of clusters formed. The *omeSOM software provides easy-to-visualize interfaces for the identification of coordinated variations in the co-expressed genes and co-accumulated metabolites. Additionally, this information is linked to the most widely used gene annotation and metabolic pathway databases.
*omeSOM is a software designed to give support to the data mining task of metabolic and transcriptional datasets derived from different databases. It provides a user-friendly interface and offers several visualization features, easy to understand by non-expert users. Therefore, *omeSOM provides support for data mining tasks and it is applicable to basic research as well as applied breeding programs. The software and a sample dataset are available free of charge at http://sourcesinc.sourceforge.net/omesom/.
现代生物学使用实验系统,通过对多个基因组的重组来探索表型变异。此类系统可用于研究代谢网络的功能进化。其中一种方法是分析转录本和代谢物的图谱。这些研究产生了大量的数据,需要专用的计算工具来进行分析。
本文介绍了一种名为“omeSOM(转录组/代谢组自组织映射)”的新型软件,它实现了一种用于生物数据聚类和可视化的神经网络模型。它允许发现携带导入的外来等位基因的作物植物中转录本和代谢物变化之间的关系,此外,它的用途可以扩展到其他类型的组学数据。该软件专注于易于识别包含不同分子实体的组,而与形成的簇的数量无关。omeSOM 软件提供了易于可视化的接口,用于识别共表达基因和共积累代谢物中的协调变化。此外,这些信息与最广泛使用的基因注释和代谢途径数据库相关联。
omeSOM 是一款专为挖掘来自不同数据库的代谢和转录数据集而设计的软件。它提供了用户友好的界面,并提供了多种可视化功能,即使是非专业用户也易于理解。因此,omeSOM 为数据挖掘任务提供了支持,适用于基础研究和应用育种计划。该软件和一个示例数据集可在 http://sourcesinc.sourceforge.net/omesom/ 免费获得。