Department of Physiology and Biophysics, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA.
Amino Acids. 2011 Mar;40(3):895-911. doi: 10.1007/s00726-010-0728-7. Epub 2010 Aug 27.
O-linked β-N-acetylglucosamine (O-GlcNAc) is an inducible, dynamically cycling and reversible post-translational modification of Ser/Thr residues of nucleocytoplasmic and mitochondrial proteins. We recently discovered that O-GlcNAcylation confers cytoprotection in the heart via attenuating the formation of mitochondrial permeability transition pore (mPTP) and the subsequent loss of mitochondrial membrane potential. Because Ca(2+) overload and reactive oxygen species (ROS) generation are prominent features of post-ischemic injury and favor mPTP formation, we ascertained whether O-GlcNAcylation mitigates mPTP formation via its effects on Ca(2+) overload and ROS generation. Subjecting neonatal rat cardiac myocytes (NRCMs, n ≥ 6 per group) to hypoxia, or mice (n ≥ 4 per group) to myocardial ischemia reduced O-GlcNAcylation, which later increased during reoxygenation/reperfusion. NRCMs (n ≥ 4 per group) infected with an adenovirus carrying nothing (control), adenoviral O-GlcNAc transferase (adds O-GlcNAc to proteins, AdOGT), adenoviral O-GlcNAcase (removes O-GlcNAc to proteins, AdOGA), vehicle or PUGNAc (blocks OGA; increases O-GlcNAc levels) were subjected to hypoxia-reoxygenation or H(2)O(2), and changes in Ca(2+) levels (via Fluo-4AM and Rhod-2AM), ROS (via DCF) and mPTP formation (via calcein-MitoTracker Red colocalization) were assessed using time-lapse fluorescence microscopy. Both OGT and OGA overexpression did not significantly (P > 0.05) alter baseline Ca(2+) or ROS levels. However, AdOGT significantly (P < 0.05) attenuated both hypoxia and oxidative stress-induced Ca(2+) overload and ROS generation. Additionally, OGA inhibition mitigated both H(2)O(2)-induced Ca(2+) overload and ROS generation. Although AdOGA exacerbated both hypoxia and H(2)O(2)-induced ROS generation, it had no effect on H(2)O(2)-induced Ca(2+) overload. We conclude that inhibition of Ca(2+) overload and ROS generation (inducers of mPTP) might be one mechanism through which O-GlcNAcylation reduces ischemia/hypoxia-mediated mPTP formation.
O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)是一种诱导的、动态循环的和可逆的核细胞质和线粒体蛋白丝氨酸/苏氨酸残基的翻译后修饰。我们最近发现,O-GlcNAcylation 通过减弱线粒体通透性转换孔(mPTP)的形成和随后的线粒体膜电位丧失来提供心脏保护。因为钙超载和活性氧(ROS)的产生是缺血后损伤的显著特征,并有利于 mPTP 的形成,所以我们确定 O-GlcNAcylation 是否通过其对钙超载和 ROS 生成的影响来减轻 mPTP 的形成。将新生大鼠心肌细胞(NRCMs,每组至少 6 个细胞)置于缺氧条件下,或用心肌缺血处理小鼠(每组至少 4 只)会降低 O-GlcNAcylation,随后在再氧合/再灌注过程中增加。用携带什么都没有的腺病毒(对照)、携带腺病毒 O-GlcNAc 转移酶(向蛋白质中添加 O-GlcNAc,AdOGT)、携带腺病毒 O-GlcNAcase(向蛋白质中去除 O-GlcNAc,AdOGA)、载体或 PUGNAc(阻断 OGA;增加 O-GlcNAc 水平)的腺病毒感染的 NRCMs(每组至少 4 个细胞)被置于缺氧-复氧或 H 2 O 2 中,并使用时间 lapse 荧光显微镜评估 Ca 2 + 水平(通过 Fluo-4AM 和 Rhod-2AM)、ROS(通过 DCF)和 mPTP 形成(通过 calcein-MitoTracker Red 共定位)的变化。OGT 和 OGA 的过表达都没有显著(P>0.05)改变基线 Ca 2 + 或 ROS 水平。然而,AdOGT 显著(P<0.05)减弱了缺氧和氧化应激诱导的 Ca 2 + 超载和 ROS 的产生。此外,OGA 抑制减轻了 H 2 O 2 诱导的 Ca 2 + 超载和 ROS 的产生。虽然 AdOGA 加剧了缺氧和 H 2 O 2 诱导的 ROS 的产生,但它对 H 2 O 2 诱导的 Ca 2 + 超载没有影响。我们的结论是,抑制 Ca 2 + 超载和 ROS 的产生(mPTP 的诱导物)可能是 O-GlcNAcylation 减少缺血/缺氧介导的 mPTP 形成的一种机制。