Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
J Pharm Sci. 2011 Mar;100(3):1156-66. doi: 10.1002/jps.22322. Epub 2010 Aug 27.
Population pharmacokinetic (PK) analyses have been successfully incorporated into drug dosing optimization; however, these analyses necessitate relatively large patient cohorts that many clinical trials do not have the luxury of affording. To address this problem, we developed an approach that utilizes physiologically based pharmacokinetic (PBPK) modeling coupled with Monte Carlo simulation to generate a virtual population, complete with associated patient characteristics and PK data, for population PK analysis. For this work, we used a previously published PBPK model for docetaxel and found that the systemic clearance of this drug was significantly affected by blood volume, slowly perfused tissue volume, and two liver metabolic parameters--the maximum rate of liver metabolism and the Michaelis constant for liver metabolism. These findings, as well as the PK variability predictions, are consistent with those previously associated with docetaxel clearance in population PK analyses performed with actual patient populations, namely plasma protein levels, body size, and hepatic function. Thus, this in silico exercise demonstrates the utility of simulation modeling coupled to population PK analysis for the estimation of PK variability and the identification of patient characteristics that affect a drug's PK in the absence of data assembled from large clinical trials.
群体药代动力学(PK)分析已成功应用于药物剂量优化;然而,这些分析需要相对较大的患者群体,而许多临床试验没有这样的条件。为了解决这个问题,我们开发了一种方法,利用基于生理学的药代动力学(PBPK)模型结合蒙特卡罗模拟来生成虚拟群体,包括相关的患者特征和 PK 数据,用于群体 PK 分析。在这项工作中,我们使用了先前发表的多西紫杉醇 PBPK 模型,发现该药物的全身清除率受到血容量、低灌注组织体积以及两个肝脏代谢参数——肝脏代谢的最大速率和肝脏代谢的米氏常数的显著影响。这些发现以及 PK 变异性预测与先前与实际患者群体进行的多西紫杉醇清除率的群体 PK 分析相关的发现一致,即血浆蛋白水平、体型和肝功能。因此,这项计算机模拟研究证明了模拟建模与群体 PK 分析相结合,用于估计 PK 变异性以及确定影响药物 PK 的患者特征的实用性,而无需从大型临床试验中收集数据。