Suppr超能文献

经胆排泄的药代动力学模型预测纳米前药代谢。

Prediction of nanoparticle prodrug metabolism by pharmacokinetic modeling of biliary excretion.

机构信息

Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., Frederick National Lab for Cancer Research, Frederick, 21702, USA.

出版信息

J Control Release. 2013 Dec 10;172(2):558-67. doi: 10.1016/j.jconrel.2013.04.025. Epub 2013 May 9.

Abstract

Pharmacokinetic modeling and simulation is a powerful tool for the prediction of drug concentrations in the absence of analytical techniques that allow for direct quantification. The present study applied this modeling approach to determine active drug release from a nanoparticle prodrug formulation. A comparative pharmacokinetic study of a nanoscale micellar docetaxel (DTX) prodrug, Procet 8, and commercial DTX formulation, Taxotere, was conducted in bile duct cannulated rats. The nanoscale (~40nm) size of the Procet 8 formulation resulted in confinement within the plasma space and high prodrug plasma concentrations. Ex vivo prodrug hydrolysis during plasma sample preparation resulted in unacceptable error that precluded direct measurement of DTX concentrations. Pharmacokinetic modeling of Taxotere and Procet 8 plasma concentrations, and their associated biliary metabolites, allowed for prediction of the DTX concentration profile and DTX bioavailability, and thereby evaluation of Procet 8 metabolism. Procet 8 plasma decay and in vitro plasma hydrolytic rates were identical, suggesting that systemic clearance of the prodrug was primarily metabolic. The Procet 8 and Taxotere plasma profiles, and associated docetaxel hydroxy-tert-butyl carbamate (HDTX) metabolite biliary excretion, were best fit by a two compartment model, with both linear and non-linear DTX clearance, and first order Procet 8 hydrolysis. The model estimated HDTX clearance rate agreed with in vitro literature values, supporting the predictability of the proposed model. Model simulation at the 10mg DTX equivalent/kg dose level predicted DTX formation rate-limited kinetics and a peak plasma DTX concentration of 39ng/mL at 4h for Procet 8, in comparison to 2826ng/mL for Taxotere. As a result of nonlinear DTX clearance, the DTX AUCinf for the Procet 8 formulation was predicted to be 2.6 times lower than Taxotere (775 vs. 2017h×ng/mL, respectively), resulting in an absolute bioavailability estimate of 38%. As DTX clearance in man is considered linear, this low bioavailability is likely species-dependent. These data support the use of pharmacokinetic modeling and simulation in cases of complex formulations, where analytical methods for direct measurement of free (released) drug concentrations are unavailable. Uses of such models may include interpretation of preclinical toxicology studies, selection of first in man dosing regimens, and PK/PD model development.

摘要

药代动力学建模和模拟是预测缺乏允许直接定量分析技术的药物浓度的有力工具。本研究应用该建模方法来确定纳米颗粒前药制剂中活性药物的释放。在胆管插管大鼠中进行了纳米级胶束多西紫杉醇(DTX)前药 Procet 8 与商业 DTX 制剂 Taxotere 的比较药代动力学研究。Procet 8 制剂的纳米级 (~40nm) 尺寸导致其局限于血浆空间并产生高前药血浆浓度。在血浆样品制备过程中外源性前药水解导致不可接受的误差,从而阻止了 DTX 浓度的直接测量。Taxotere 和 Procet 8 血浆浓度及其相关胆汁代谢物的药代动力学模型允许预测 DTX 浓度曲线和 DTX 生物利用度,从而评估 Procet 8 的代谢情况。Procet 8 血浆衰减和体外血浆水解速率相同,表明前药的全身清除主要是代谢性的。Procet 8 和 Taxotere 的血浆曲线以及相关的多西紫杉醇羟基叔丁基碳酸酯(HDTX)代谢物胆汁排泄,通过具有线性和非线性 DTX 清除率以及第一级 Procet 8 水解的两室模型拟合最佳。模型估计的 HDTX 清除率与体外文献值一致,支持所提出模型的可预测性。在 10mg DTX 当量/公斤剂量水平的模型模拟预测,Procet 8 的 DTX 形成限速动力学,在 4 小时时的峰血浆 DTX 浓度为 39ng/mL,而 Taxotere 为 2826ng/mL。由于 DTX 清除非线性,Procet 8 制剂的 DTX AUCinf 预计比 Taxotere 低 2.6 倍(分别为 775 和 2017h×ng/mL),导致绝对生物利用度估计为 38%。由于人类 DTX 清除被认为是线性的,这种低生物利用度可能与物种有关。这些数据支持在缺乏直接测量游离(释放)药物浓度的分析方法的复杂制剂的情况下使用药代动力学建模和模拟。此类模型的用途可能包括解释临床前毒理学研究、选择人体首次剂量方案以及 PK/PD 模型开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e4/3788091/7754a413f7fa/nihms479097f1.jpg

相似文献

2
Stable isotope method to measure drug release from nanomedicines.用于测量纳米药物中药物释放的稳定同位素方法。
J Control Release. 2015 Dec 28;220(Pt A):169-174. doi: 10.1016/j.jconrel.2015.10.042. Epub 2015 Oct 24.

引用本文的文献

5
Stable isotope method to measure drug release from nanomedicines.用于测量纳米药物中药物释放的稳定同位素方法。
J Control Release. 2015 Dec 28;220(Pt A):169-174. doi: 10.1016/j.jconrel.2015.10.042. Epub 2015 Oct 24.
6
Comparison of two methods forecasting binding rate of plasma protein.两种预测血浆蛋白结合率方法的比较。
Comput Math Methods Med. 2014;2014:957154. doi: 10.1155/2014/957154. Epub 2014 Aug 4.

本文引用的文献

4
Translational considerations for cancer nanomedicine.癌症纳米医学的转化考量。
J Control Release. 2010 Sep 1;146(2):164-74. doi: 10.1016/j.jconrel.2010.04.008. Epub 2010 Apr 10.
10
Factors affecting toxicity and efficacy of polymeric nanomedicines.影响聚合物纳米药物毒性和疗效的因素。
Toxicol Appl Pharmacol. 2008 May 15;229(1):121-34. doi: 10.1016/j.taap.2008.02.007. Epub 2008 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验