Suppr超能文献

乳糖阻遏物 N 结构域单体-单体界面的 94-98 位对别构通讯至关重要。

Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication.

机构信息

Department of Biochemistry and Cell Biology, Rice University, MS-140, 6100 South Main Street, Houston, Texas 77005, USA.

出版信息

Biochemistry. 2010 Oct 5;49(39):8636-45. doi: 10.1021/bi101106x. Epub 2010 Sep 8.

Abstract

The central region of the LacI N-subdomain monomer-monomer interface includes residues K84, V94, V95, V96, S97, and M98. The side chains of these residues line the β-strands at this interface and interact to create a network of hydrophobic, charged, and polar interactions that significantly rearranges in different functional states of LacI. Prior work showed that converting K84 to an apolar residue or converting V96 to an acidic residue impedes the allosteric response to inducer. Thus, we postulated that a disproportionate number of substitutions in this region of the monomer-monomer interface would alter the complex features of the LacI allosteric response. To explore this hypothesis, acidic, basic, polar, and apolar mutations were introduced at positions 94-98. Despite their varied locations along the β-strands that flank the interface, ∼70% of the mutations impact allosteric behavior, with the most significant effects found for charged substitutions. Of note, many of the LacI variants with minor functional impact exhibited altered stability to urea denaturation. The results confirm the critical role of amino acids 94-98 and indicate that this N-subdomain interface forms a primary pathway in LacI allosteric response.

摘要

LacI N 结构域单体-单体界面的中心区域包括残基 K84、V94、V95、V96、S97 和 M98。这些残基的侧链排列在该界面的β-链上,并相互作用形成一个由疏水、带电和极性相互作用组成的网络,这些相互作用在 LacI 的不同功能状态下会发生显著重排。先前的工作表明,将 K84 转化为非极性残基或将 V96 转化为酸性残基会阻碍别构对诱导物的响应。因此,我们推测在单体-单体界面的这个区域中,不成比例数量的取代会改变 LacI 别构响应的复杂特征。为了探索这一假设,在位置 94-98 处引入了酸性、碱性、极性和非极性突变。尽管这些突变位于侧翼界面的β-链上的位置不同,但约 70%的突变会影响别构行为,其中带电荷的取代影响最大。值得注意的是,许多对功能影响较小的 LacI 变体表现出对尿素变性的稳定性改变。结果证实了 94-98 位氨基酸的关键作用,并表明该 N 结构域界面形成了 LacI 别构响应的主要途径。

相似文献

引用本文的文献

2
The genotype-phenotype landscape of an allosteric protein.别构蛋白的基因型-表型景观。
Mol Syst Biol. 2021 Mar;17(3):e10179. doi: 10.15252/msb.202010179.
4
Experimental evolution and proximate mechanisms in biology.生物学中的实验进化与近因机制
Synth Syst Biotechnol. 2017 Nov 6;2(4):253-258. doi: 10.1016/j.synbio.2017.10.004. eCollection 2017 Dec.
8
Environmental dependence of genetic constraint.环境对遗传约束的影响。
PLoS Genet. 2013 Jun;9(6):e1003580. doi: 10.1371/journal.pgen.1003580. Epub 2013 Jun 27.

本文引用的文献

2
Biochemistry. An ensemble view of allostery.生物化学。变构的整体观点。
Science. 2010 Feb 5;327(5966):653-4. doi: 10.1126/science.1186121.
4
Regulating transcription regulators via allostery and flexibility.通过变构和灵活性调节转录调节因子。
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22035-6. doi: 10.1073/pnas.0912300107. Epub 2009 Dec 23.
5
Dynamic activation of an allosteric regulatory protein.变构调节蛋白的动态激活
Nature. 2009 Nov 19;462(7271):368-72. doi: 10.1038/nature08560.
7
One is not enough.一个是不够的。
J Mol Biol. 2009 Oct 9;392(5):1133-44. doi: 10.1016/j.jmb.2009.07.050. Epub 2009 Jul 22.
10
Allostery and cooperativity revisited.变构与协同作用再探讨。
Protein Sci. 2008 Aug;17(8):1295-307. doi: 10.1110/ps.03259908. Epub 2008 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验