Suppr超能文献

设计一种变构转录因子以响应新的配体。

Engineering an allosteric transcription factor to respond to new ligands.

作者信息

Taylor Noah D, Garruss Alexander S, Moretti Rocco, Chan Sum, Arbing Mark A, Cascio Duilio, Rogers Jameson K, Isaacs Farren J, Kosuri Sriram, Baker David, Fields Stanley, Church George M, Raman Srivatsan

机构信息

Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts, USA.

Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Nat Methods. 2016 Feb;13(2):177-83. doi: 10.1038/nmeth.3696. Epub 2015 Dec 21.

Abstract

Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

摘要

可被小分子诱导的遗传调控蛋白作为传感器和开关是有用的合成生物学工具。细菌变构转录因子(aTFs)是一类主要的调控蛋白,但很少有aTFs被重新设计以响应天然aTF-诱导剂对之外的新效应物。改变这些蛋白质中的诱导剂特异性很困难,因为影响诱导剂结合的取代也可能破坏变构作用。我们对一种aTF,即大肠杆菌乳糖阻遏蛋白LacI进行了工程改造,使其对四种新诱导剂分子之一作出反应:岩藻糖、龙胆二糖、乳糖醇和三氯蔗糖。通过计算蛋白质设计、单残基饱和诱变或随机诱变,以及多重组装,我们鉴定出了特异性和诱导能力与野生型LacI及其诱导剂异丙基β-D-1-硫代半乳糖苷(IPTG)相当的新变体。创建定制aTFs的能力将使包括细胞代谢、细胞生物学和合成基因回路的动态控制在内的应用成为可能。

相似文献

1
Engineering an allosteric transcription factor to respond to new ligands.
Nat Methods. 2016 Feb;13(2):177-83. doi: 10.1038/nmeth.3696. Epub 2015 Dec 21.
3
A single mutation in the core domain of the lac repressor reduces leakiness.
Microb Cell Fact. 2013 Jul 8;12:67. doi: 10.1186/1475-2859-12-67.
4
A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization.
ACS Synth Biol. 2018 Sep 21;7(9):1990-1999. doi: 10.1021/acssynbio.8b00052. Epub 2018 Aug 14.
5
Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
Protein Eng Des Sel. 2013 Jun;26(6):433-43. doi: 10.1093/protein/gzt013. Epub 2013 Apr 14.
6
Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication.
Biochemistry. 2010 Oct 5;49(39):8636-45. doi: 10.1021/bi101106x. Epub 2010 Sep 8.
7
Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli.
J Basic Microbiol. 2018 Sep;58(9):806-810. doi: 10.1002/jobm.201800160. Epub 2018 Jul 2.
8
Genetic switching by the Lac repressor is based on two-state Monod-Wyman-Changeux allostery.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2311240120. doi: 10.1073/pnas.2311240120. Epub 2023 Nov 29.

引用本文的文献

1
Active learning-guided optimization of cell-free biosensors for lead testing in drinking water.
bioRxiv. 2025 Aug 22:2025.08.20.671382. doi: 10.1101/2025.08.20.671382.
2
Protein, Nucleic Acid, and Nanomaterial Engineering for Biosensors and Monitoring.
Biosensors (Basel). 2025 Jul 3;15(7):430. doi: 10.3390/bios15070430.
3
Computation-guided redesign of promoter specificity of a bacterial RNA polymerase.
bioRxiv. 2025 Jun 27:2022.11.29.518332. doi: 10.1101/2022.11.29.518332.
4
PYR1 Biosensor-Driven Genome-Wide CRISPR Screens for Improved Monoterpene Production in .
ACS Synth Biol. 2025 Jul 10. doi: 10.1021/acssynbio.4c00797.
5
Advancements and Prospects in DNA-Based Bioanalytical Technology for Environmental Toxicant Detection.
JACS Au. 2025 Jun 2;5(6):2443-2462. doi: 10.1021/jacsau.5c00398. eCollection 2025 Jun 23.
6
Unusually Broad-spectrum small-molecule sensing using a single protein scaffold.
bioRxiv. 2025 May 15:2025.05.15.654352. doi: 10.1101/2025.05.15.654352.
7
Recent Advances in Spatiotemporal Manipulation of Engineered Bacteria for Precision Cancer Therapy.
Int J Nanomedicine. 2025 May 7;20:5859-5872. doi: 10.2147/IJN.S516523. eCollection 2025.
8
Ultrasound-responsive engineered bacteria mediated specific controlled expression of catalase and efficient radiotherapy.
Mater Today Bio. 2025 Feb 27;31:101620. doi: 10.1016/j.mtbio.2025.101620. eCollection 2025 Apr.

本文引用的文献

2
Synthetic biosensors for precise gene control and real-time monitoring of metabolites.
Nucleic Acids Res. 2015 Sep 3;43(15):7648-60. doi: 10.1093/nar/gkv616. Epub 2015 Jul 7.
4
Evolution-guided optimization of biosynthetic pathways.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17803-8. doi: 10.1073/pnas.1409523111. Epub 2014 Dec 1.
5
Engineering allostery.
Trends Genet. 2014 Dec;30(12):521-8. doi: 10.1016/j.tig.2014.09.004. Epub 2014 Oct 8.
6
Computational design of ligand-binding proteins with high affinity and selectivity.
Nature. 2013 Sep 12;501(7466):212-216. doi: 10.1038/nature12443. Epub 2013 Sep 4.
7
Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis.
ACS Synth Biol. 2013 Jan 18;2(1):47-58. doi: 10.1021/sb300091d. Epub 2012 Nov 14.
8
Conformer generation with OMEGA: learning from the data set and the analysis of failures.
J Chem Inf Model. 2012 Nov 26;52(11):2919-36. doi: 10.1021/ci300314k. Epub 2012 Nov 12.
10
FLASH: fast length adjustment of short reads to improve genome assemblies.
Bioinformatics. 2011 Nov 1;27(21):2957-63. doi: 10.1093/bioinformatics/btr507. Epub 2011 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验