Suppr超能文献

迈向动态蛋白质网络的矩阵力学框架。

Towards a matrix mechanics framework for dynamic protein network.

作者信息

Bhattacharya Sanjoy K

机构信息

Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, Suite 706A, Miami, FL 33136 USA.

出版信息

Syst Synth Biol. 2010 Jun;4(2):139-44. doi: 10.1007/s11693-009-9051-6. Epub 2010 Jan 9.

Abstract

Protein-protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials.

摘要

蛋白质-蛋白质相互作用网络目前是通过基于静态实验数据由软件生成的相互作用网络来可视化的。当前的状态仅限于静态的、大多是非区室化的网络以及非时间分辨的蛋白质相互作用。对于粘性液态(细胞质内的情况)中的粒子相互作用,不存在令人满意的数学基础,而且当前的计算机程序也无法构建用于时间分辨相互作用的动态相互作用网络。为细胞内蛋白质相互作用建立数学基础可以分两步实现:(a)使用几种模型系统和高通量时间分辨蛋白质组学触发并捕获选定蛋白质子集的动态分子变化,以及(b)利用这些信息为区室化和动态蛋白质相互作用网络建立数学基础和计算算法。这样的基础预计至少在两个方面会带来益处:(a)理解生理学,从而能够解释诸如遗传疾病中不完全外显等现象,以及(b)使用不纯的起始材料使生物制药产量提高几倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/833b/2923300/bdfa77bcb07e/11693_2009_9051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验