Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.
J Org Chem. 2010 Oct 1;75(19):6540-8. doi: 10.1021/jo101305m.
We described in a previous communication a variant of the popular Cu(I)-catalyzed azide-alkyne cycloaddition (AAC) process where 5 mol % of Cu(OAc)(2) in the absence of any added reducing agent is sufficient to enable the reaction. 2-Picolylazide (1) and 2-azidomethylquinoline (2) were found to be by far the most reactive carbon azide substrates that convert to 1,2,3-triazoles in as short as a few minutes under the discovered conditions. We hypothesized that the abilities of 1 and 2 to chelate Cu(II) contribute significantly to the observed high reaction rates. The current work examines the effect of auxiliary ligands near the azido group other than pyridyl for Cu(II) on the efficiency of the Cu(OAc)(2)-accelerated AAC reaction. The carbon azides capable of binding to the catalytic copper center at the alkylated azido nitrogen in a chelatable fashion were indeed shown to be superior substrates under the reported conditions. The chelation between carbon azide 11 and Cu(II) was demonstrated in an X-ray single-crystal structure. In a limited set of examples, the ligand tris(benzyltriazolylmethyl)amine (TBTA), developed by Fokin et al. for assisting the original Cu(I)-catalyzed AAC reactions, also dramatically enhances the Cu(OAc)(2)-accelerated AAC reactions involving nonchelating azides. This observation leads to the hypothesis of an additional effect of chelating azides on the efficiencies of Cu(OAc)(2)-accelerated AAC reactions, which is to facilitate the rapid reduction of Cu(II) to highly catalytic Cu(I) species. Mechanistic studies on the AAC reactions with particular emphasis on the role of carbon azide/copper interactions will be conducted based on the observations reported in this work. Finally, the immediate utility of the product 1,2,3-triazole molecules derived from chelating azides as multidentate metal coordination ligands is demonstrated. The resulting triazolyl-containing ligands are expected to bind with transition metal ions via the N(2) nitrogen of the 1,2,3-triazolyl group to form nonplanar coordination rings. The Cu(II) complexes of bidentate T1 and tetradentate T6 and the Zn(II) complex of T6 were characterized by X-ray crystallography. The structure of Cu(T1)(2)(H(2)O)(2)(2) reveals the interesting synergistic effect of hydrogen bonding, π-π stacking interactions, and metal coordination in forming a one-dimensional supramolecular construct in the solid state. The tetradentate coordination mode of T6 may be incorporated into designs of new molecule sensors and organometallic catalysts.
我们在前一篇通讯中描述了一种流行的 Cu(I)-催化叠氮-炔环加成 (AAC) 反应的变体,其中在没有添加任何还原剂的情况下,5 mol%的 Cu(OAc)(2)就足以使反应进行。我们发现,2-吡啶基叠氮化物 (1) 和 2-叠氮甲基喹啉 (2) 是迄今为止最具反应性的碳叠氮化物底物,在发现的条件下,它们可以在短短几分钟内转化为 1,2,3-三唑。我们假设 1 和 2 螯合 Cu(II)的能力对观察到的高反应速率有显著贡献。目前的工作研究了除吡啶以外的辅助配体靠近叠氮基团对 Cu(II)的影响,以提高 Cu(OAc)(2)加速 AAC 反应的效率。能够以螯合方式结合到被烷基化叠氮氮上的催化铜中心的碳叠氮化物确实在报告的条件下是更好的底物。碳叠氮化物 11 与 Cu(II)的螯合在 X 射线单晶结构中得到了证明。在有限的例子中,由 Fokin 等人开发的用于辅助原始 Cu(I)-催化 AAC 反应的三(苄基三唑基甲基)胺 (TBTA)配体也显著增强了涉及非螯合叠氮化物的 Cu(OAc)(2)加速 AAC 反应。这一观察结果导致了一个假设,即螯合叠氮化物对 Cu(OAc)(2)加速 AAC 反应效率的影响是促进 Cu(II)的快速还原为高催化活性的 Cu(I)物种。本工作将根据报告的观察结果,对 AAC 反应进行重点研究碳叠氮化物/铜相互作用的作用机制研究。最后,证明了源自螯合叠氮化物的 1,2,3-三唑分子作为多齿金属配位配体的直接用途。所得的含三唑基配体预计将通过 1,2,3-三唑基的 N(2)氮与过渡金属离子结合,形成非平面配位环。双齿 T1 和四齿 T6 的 Cu(II)配合物以及 T6 的 Zn(II)配合物通过 X 射线晶体学进行了表征。Cu(T1)(2)(H(2)O)(2)(2)的结构揭示了氢键、π-π堆积相互作用和金属配位在固态中形成一维超分子结构的协同效应。T6 的四齿配位模式可能被纳入新型分子传感器和有机金属催化剂的设计中。
J Org Chem. 2010-10-1
Chem Asian J. 2011-8-29
Org Lett. 2009-11-5
Chem Rev. 2008-8
Org Biomol Chem. 2011-10-24
Bioconjug Chem. 2024-11-20
J Am Chem Soc. 2024-5-15
Biophys Rev (Melville). 2021-5-25
Front Chem. 2021-11-11
ACS Appl Mater Interfaces. 2021-11-17
Angew Chem Int Ed Engl. 1998-9-4
Chem Soc Rev. 2010-4
Chem Commun (Camb). 2010-1-22
Org Lett. 2009-11-5
J Am Chem Soc. 2008-11-19