Suppr超能文献

一种更好的振荡检测方法能够稳健地提取大脑状态变化中的 EEG 节律:以人类 alpha 节律为例。

A better oscillation detection method robustly extracts EEG rhythms across brain state changes: the human alpha rhythm as a test case.

机构信息

Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada.

出版信息

Neuroimage. 2011 Jan 15;54(2):860-74. doi: 10.1016/j.neuroimage.2010.08.064. Epub 2010 Aug 31.

Abstract

Oscillatory activity is a principal mode of operation in the brain. Despite an intense resurgence of interest in the mechanisms and functions of brain rhythms, methods for the detection and analysis of oscillatory activity in neurophysiological recordings are still highly variable across studies. We recently proposed a method for detecting oscillatory activity from time series data, which we call the BOSC (Better OSCillation detection) method. This method produces systematic, objective, and consistent results across frequencies, brain regions and tasks. It does so by modeling the functional form of the background spectrum by fitting the empirically observed spectrum at the recording site. This minimizes bias in oscillation detection across frequency, region and task. Here we show that the method is also robust to dramatic changes in state that are known to influence the shape of the power spectrum, namely, the presence versus absence of the alpha rhythm, and can be applied to independent components, which are thought to reflect underlying sources, in addition to individual raw signals. This suggests that the BOSC method is an effective tool for measuring changes in rhythmic activity in the more common research scenario wherein state is unknown.

摘要

振荡活动是大脑的主要运作模式。尽管人们对脑节律的机制和功能产生了浓厚的兴趣,但在神经生理学记录中检测和分析振荡活动的方法在不同研究中仍然存在很大差异。我们最近提出了一种从时间序列数据中检测振荡活动的方法,我们称之为 BOSC(更好的振荡检测)方法。该方法在频率、脑区和任务上产生系统、客观和一致的结果。它通过在记录部位拟合经验观测到的频谱来对背景频谱的函数形式进行建模。这最大限度地减少了在频率、区域和任务中检测振荡的偏差。在这里,我们表明该方法对于已知会影响功率谱形状的状态的剧烈变化也是稳健的,例如,阿尔法节律的存在与否,并且可以应用于独立成分,这些成分被认为除了单个原始信号之外,还反映了潜在的来源。这表明,BOSC 方法是一种在更常见的研究场景中测量节律活动变化的有效工具,在这种场景中,状态是未知的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验