Suppr超能文献

BSD:神经光谱参数模型的贝叶斯框架。

BSD: A Bayesian Framework for Parametric Models of Neural Spectra.

作者信息

Medrano Johan, Alexander Nicholas A, Seymour Robert A, Zeidman Peter

机构信息

Department of Imaging Neuroscience, Functional Imaging Laboratory, UCL Queen Square Institute of Neurology, London, UK.

出版信息

Eur J Neurosci. 2025 May;61(10):e70149. doi: 10.1111/ejn.70149.

Abstract

The analysis of neural power spectra plays a crucial role in understanding brain function and dysfunction. While recent efforts have led to the development of methods for decomposing spectral data, challenges remain in performing statistical analysis and group-level comparisons. Here, we introduce Bayesian spectral decomposition (BSD), a Bayesian framework for analysing neural spectral power. BSD allows for the specification, inversion, comparison and analysis of parametric models of neural spectra, addressing limitations of existing methods. We first establish the face validity of BSD on simulated data and show how it outperforms an established method [fit oscillations and one-over-f (FOOOF)] for peak detection on artificial spectral data. We then demonstrate the efficacy of BSD on a group-level study of electroencephalography (EEG) spectra in 204 healthy subjects from the LEMON dataset. Our results not only highlight the effectiveness of BSD in model selection and parameter estimation but also illustrate how BSD enables straightforward group-level regression of the effect of continuous covariates such as age. By using Bayesian inference techniques, BSD provides a robust framework for studying neural spectral data and their relationship to brain function and dysfunction.

摘要

神经功率谱分析在理解大脑功能和功能障碍方面起着至关重要的作用。尽管最近的努力已经促成了分解频谱数据方法的发展,但在进行统计分析和组间比较方面仍然存在挑战。在此,我们介绍贝叶斯频谱分解(BSD),这是一种用于分析神经频谱功率的贝叶斯框架。BSD允许对神经频谱的参数模型进行指定、求逆、比较和分析,解决了现有方法的局限性。我们首先在模拟数据上确立了BSD的表面效度,并展示了它在人工频谱数据的峰值检测方面如何优于一种既定方法[拟合振荡和1/f(FOOOF)]。然后,我们在对来自LEMON数据集的204名健康受试者的脑电图(EEG)频谱进行的组水平研究中证明了BSD的有效性。我们的结果不仅突出了BSD在模型选择和参数估计方面的有效性,还说明了BSD如何能够对年龄等连续协变量的影响进行直接的组水平回归。通过使用贝叶斯推理技术,BSD为研究神经频谱数据及其与大脑功能和功能障碍的关系提供了一个强大的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验