Suppr超能文献

用于生物医学成像和治疗的纳米载体合理设计的综合方法。

An integrated approach for the rational design of nanovectors for biomedical imaging and therapy.

机构信息

Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA.

出版信息

Adv Genet. 2010;69:31-64. doi: 10.1016/S0065-2660(10)69009-8.

Abstract

The use of nanoparticles for the early detection, cure, and imaging of diseases has been proved already to have a colossal potential in different biomedical fields, such as oncology and cardiology. A broad spectrum of nanoparticles are currently under development, exhibiting differences in (i) size, ranging from few tens of nanometers to few microns; (ii) shape, from the classical spherical beads to discoidal, hemispherical, cylindrical, and conical; (iii) surface functionalization, with a wide range of electrostatic charges and biomolecule conjugations. Clearly, the library of nanoparticles generated by combining all possible sizes, shapes, and surface physicochemical properties is enormous. With such a complex scenario, an integrated approach is here proposed and described for the rational design of nanoparticle systems (nanovectors) for the intravascular delivery of therapeutic and imaging contrast agents. The proposed integrated approach combines multiscale/multiphysics mathematical models with in vitro assays and in vivo intravital microscopy (IVM) experiments and aims at identifying the optimal combination of size, shape, and surface properties that maximize the nanovectors localization within the diseased microvasculature.

摘要

用于疾病的早期检测、治疗和成像的纳米粒子已被证明在肿瘤学和心脏病学等不同的生物医学领域具有巨大的潜力。目前正在开发广泛的纳米粒子,其差异在于(i)尺寸,从几十纳米到几微米不等;(ii)形状,从经典的球形珠到盘状、半球形、圆柱形和圆锥形;(iii)表面功能化,具有广泛的静电电荷和生物分子结合。显然,通过组合所有可能的尺寸、形状和表面物理化学性质生成的纳米粒子库是巨大的。在这种复杂的情况下,提出并描述了一种综合方法,用于合理设计用于治疗和成像对比剂的血管内递药的纳米粒子系统(纳米载体)。所提出的综合方法将多尺度/多物理数学模型与体外测定和体内活体显微镜(IVM)实验相结合,旨在确定尺寸、形状和表面特性的最佳组合,以最大限度地将纳米载体定位于病变的微血管内。

相似文献

3
Multi-stage delivery nano-particle systems for therapeutic applications.用于治疗应用的多阶段递送纳米颗粒系统。
Biochim Biophys Acta. 2011 Mar;1810(3):317-29. doi: 10.1016/j.bbagen.2010.05.004. Epub 2010 May 21.
5
In vivo targeted delivery of nanoparticles for theranosis.体内靶向递纳米粒用于治疗。
Acc Chem Res. 2011 Oct 18;44(10):1018-28. doi: 10.1021/ar2000138. Epub 2011 Aug 18.
7
Design maps for nanoparticles targeting the diseased microvasculature.设计靶向病变微血管的纳米颗粒图谱。
Biomaterials. 2008 Jan;29(3):377-84. doi: 10.1016/j.biomaterials.2007.09.025. Epub 2007 Oct 22.
9
Perspective on Nanoparticle Technology for Biomedical Use.生物医学应用中的纳米颗粒技术展望
Curr Pharm Des. 2016;22(17):2481-90. doi: 10.2174/1381612822666160307151409.

引用本文的文献

本文引用的文献

3
Design of bio-mimetic particles with enhanced vascular interaction.具有增强血管相互作用的仿生颗粒的设计
J Biomech. 2009 Aug 25;42(12):1885-90. doi: 10.1016/j.jbiomech.2009.05.012. Epub 2009 Jun 11.
4
Nanomedicine--challenge and perspectives.纳米医学——挑战与展望。
Angew Chem Int Ed Engl. 2009;48(5):872-97. doi: 10.1002/anie.200802585.
7
Seven challenges for nanomedicine.纳米医学面临的七大挑战。
Nat Nanotechnol. 2008 May;3(5):242-4. doi: 10.1038/nnano.2008.114.
9
Nanoparticle-mediated cellular response is size-dependent.纳米颗粒介导的细胞反应具有尺寸依赖性。
Nat Nanotechnol. 2008 Mar;3(3):145-50. doi: 10.1038/nnano.2008.30. Epub 2008 Mar 2.
10
Nanogeometry: beyond drug delivery.纳米几何学:超越药物递送
Nat Nanotechnol. 2008 Mar;3(3):131-2. doi: 10.1038/nnano.2008.46.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验