Suppr超能文献

作为肿瘤微环境函数的纳米治疗反应建模:聚焦肝转移

Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis.

作者信息

Frieboes Hermann B, Raghavan Shreya, Godin Biana

机构信息

Department of Bioengineering, University of Louisville, Louisville, KY, United States.

James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.

出版信息

Front Bioeng Biotechnol. 2020 Aug 19;8:1011. doi: 10.3389/fbioe.2020.01011. eCollection 2020.

Abstract

The tumor microenvironment (TME) presents a challenging barrier for effective nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less vascularized than the surrounding normal tissue, as in liver metastases, the structure of the organ itself conjures with cancer-specific behavior to impair drug transport and uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors play a key role in the process of delivery and retention of anti-cancer therapeutics by nanocarriers. This brief review describes the drug transport challenges and how they are being addressed with advanced 3D tissue models as well as with mathematical modeling. This modeling complements network-oriented techniques, which seek to interpret intra-cellular relevant pathways and signal transduction within cells and with their surrounding microenvironment. With a concerted effort integrating experimental observations with computational analyses spanning from the molecular- to the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific conditions may be finally realized.

摘要

肿瘤微环境(TME)是纳米疗法介导的药物有效递送至实体瘤的一个具有挑战性的障碍。特别是对于那些血管化程度低于周围正常组织的肿瘤,如肝转移瘤,器官本身的结构与癌症特异性行为共同作用,会损害癌细胞对药物的转运和摄取。低血管化肿瘤的肿瘤微环境中的细胞和成分在纳米载体递送和保留抗癌治疗药物的过程中起着关键作用。本简要综述描述了药物转运面临的挑战以及如何通过先进的3D组织模型和数学建模来解决这些挑战。这种建模补充了面向网络的技术,这些技术试图解释细胞内相关途径以及细胞与其周围微环境之间的信号转导。通过将实验观察结果与从分子尺度到组织尺度的计算分析相结合的协同努力,最终可能实现针对患者肿瘤特定情况定制有效纳米疗法的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1d5/7466654/2298e151f192/fbioe-08-01011-g001.jpg

相似文献

1
Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis.
Front Bioeng Biotechnol. 2020 Aug 19;8:1011. doi: 10.3389/fbioe.2020.01011. eCollection 2020.
2
The Tumor Microenvironment as a Barrier to Cancer Nanotherapy.
Adv Exp Med Biol. 2016;936:165-190. doi: 10.1007/978-3-319-42023-3_9.
4
Nanotherapy Targeting the Tumor Microenvironment.
Curr Cancer Drug Targets. 2019;19(7):525-533. doi: 10.2174/1568009619666181220103714.
5
Tumor Microenvironment Sensitive Nanocarriers for Bioimaging and Therapeutics.
Adv Healthc Mater. 2021 Mar;10(5):e2000834. doi: 10.1002/adhm.202000834. Epub 2020 Oct 19.
6
The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment.
Front Immunol. 2023 May 24;14:1189323. doi: 10.3389/fimmu.2023.1189323. eCollection 2023.
7
Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
Eur J Pharm Biopharm. 2019 May;138:37-47. doi: 10.1016/j.ejpb.2018.09.003. Epub 2018 Sep 7.
8
Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity.
Ann Biomed Eng. 2019 Jan;47(1):257-271. doi: 10.1007/s10439-018-02146-4. Epub 2018 Oct 8.
9
Tumor Microenvironment-Enabled Nanotherapy.
Adv Healthc Mater. 2018 Apr;7(8):e1701156. doi: 10.1002/adhm.201701156. Epub 2017 Dec 28.
10
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis.
Semin Cancer Biol. 2018 Dec;53:90-109. doi: 10.1016/j.semcancer.2018.06.006. Epub 2018 Jun 30.

引用本文的文献

2
Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling of Nanomaterials.
ACS Pharmacol Transl Sci. 2024 Jul 12;7(8):2251-2279. doi: 10.1021/acsptsci.4c00250. eCollection 2024 Aug 9.
3
The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment.
Front Immunol. 2023 May 24;14:1189323. doi: 10.3389/fimmu.2023.1189323. eCollection 2023.
5
Lung targeted liposomes for treating ARDS.
J Control Release. 2022 Jun;346:421-433. doi: 10.1016/j.jconrel.2022.03.028. Epub 2022 Mar 28.
6
Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review.
Front Physiol. 2021 Sep 22;12:733393. doi: 10.3389/fphys.2021.733393. eCollection 2021.

本文引用的文献

2
Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk.
Front Oncol. 2020 Mar 11;10:324. doi: 10.3389/fonc.2020.00324. eCollection 2020.
3
A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery.
Comput Struct Biotechnol J. 2020 Feb 29;18:518-531. doi: 10.1016/j.csbj.2020.02.014. eCollection 2020.
4
Current state of the art imaging approaches for colorectal liver metastasis.
Hepatobiliary Surg Nutr. 2020 Feb;9(1):35-48. doi: 10.21037/hbsn.2019.05.11.
7
Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy.
Theranostics. 2020 Jan 1;10(1):300-311. doi: 10.7150/thno.38736. eCollection 2020.
9
Mathematical Modeling to Address Challenges in Pancreatic Cancer.
Curr Top Med Chem. 2020;20(5):367-376. doi: 10.2174/1568026620666200101095641.
10
Spatial Temporal Analysis of Fieldwise Flow in Microvasculature.
J Vis Exp. 2019 Nov 18(153). doi: 10.3791/60493.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验