Suppr超能文献

用于治疗应用的多阶段递送纳米颗粒系统。

Multi-stage delivery nano-particle systems for therapeutic applications.

作者信息

Serda Rita E, Godin Biana, Blanco Elvin, Chiappini Ciro, Ferrari Mauro

机构信息

University of Texas Health Science Center, Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030, USA.

出版信息

Biochim Biophys Acta. 2011 Mar;1810(3):317-29. doi: 10.1016/j.bbagen.2010.05.004. Epub 2010 May 21.

Abstract

BACKGROUND

The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site.

SCOPE OF REVIEW

This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well-established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics.

MAJOR CONCLUSIONS

Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.

摘要

背景

药物分子抵达病理损伤部位这一艰巨任务推动了纳米医学的快速发展。纳米载体的不断演进促使了多阶段递送系统的开发,旨在克服纳米载体在前往靶位点途中遇到的众多障碍。

综述范围

本综述总结了关于用于癌症治疗和成像的硅基药物递送载体的主要研究结果。基于合理设计,成熟的硅技术已被用于制造具有特定形状、尺寸和孔隙率的纳米载体。这些载体是多阶段递送系统的一部分,该系统包含多个纳米组件,每个组件都设计用于完成特定任务,共同目标是实现治疗药物的定点递送。

主要结论

在血液中边缘化方面,准半球形和盘状硅微粒优于球形微粒,不同形状和尺寸的微粒在体内具有独特的分布。硅微粒的细胞黏附和内化受微粒形状和表面电荷影响,后者决定血清调理素的结合。基于体外细胞研究,内皮细胞和巨噬细胞对多孔硅微粒的内化与细胞形态、细胞内运输、有丝分裂、细胞周期进程、细胞因子释放和细胞活力相容。体内研究支持与游离纳米颗粒相比,脂质体包裹的小干扰RNA在多阶段系统中递送时具有更高的治疗效果。本文是名为“纳米技术——生物医学中的新兴应用”的特刊的一部分。

相似文献

1
Multi-stage delivery nano-particle systems for therapeutic applications.
Biochim Biophys Acta. 2011 Mar;1810(3):317-29. doi: 10.1016/j.bbagen.2010.05.004. Epub 2010 May 21.
2
Mitotic trafficking of silicon microparticles.
Nanoscale. 2009 Nov;1(2):250-9. doi: 10.1039/b9nr00138g. Epub 2009 Oct 5.
3
Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics.
Biomaterials. 2013 Nov;34(33):8469-77. doi: 10.1016/j.biomaterials.2013.07.049. Epub 2013 Jul 30.
4
Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics.
Acc Chem Res. 2011 Oct 18;44(10):979-89. doi: 10.1021/ar200077p. Epub 2011 Sep 8.
5
Cellular association and assembly of a multistage delivery system.
Small. 2010 Jun 21;6(12):1329-40. doi: 10.1002/smll.201000126.
6
Intracellular trafficking of silicon particles and logic-embedded vectors.
Nanoscale. 2010 Aug;2(8):1512-20. doi: 10.1039/c0nr00227e. Epub 2010 Jun 7.
7
The association of silicon microparticles with endothelial cells in drug delivery to the vasculature.
Biomaterials. 2009 May;30(13):2440-8. doi: 10.1016/j.biomaterials.2009.01.019. Epub 2009 Feb 12.
8
Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice.
Adv Funct Mater. 2012 Oct 23;22(20):4225-4235. doi: 10.1002/adfm.201200869.
9
Tailored porous silicon microparticles: fabrication and properties.
Chemphyschem. 2010 Apr 6;11(5):1029-35. doi: 10.1002/cphc.200900914.
10
Porous silicon advances in drug delivery and immunotherapy.
Curr Opin Pharmacol. 2013 Oct;13(5):834-41. doi: 10.1016/j.coph.2013.06.006. Epub 2013 Jul 8.

引用本文的文献

1
Controlled and Targeted Drug Delivery Using Smart Nanovectors.
Int J Drug Discov Pharm. 2023 Mar;2(1):84-90. doi: 10.53941/ijddp.0201010. Epub 2023 Mar 20.
2
Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy.
Molecules. 2023 Nov 24;28(23):7750. doi: 10.3390/molecules28237750.
3
Drug Delivery Strategies for the Treatment of Pancreatic Cancer.
Pharmaceutics. 2023 Apr 22;15(5):1318. doi: 10.3390/pharmaceutics15051318.
4
Understanding and improving assays for cytotoxicity of nanoparticles: what really matters?
RSC Adv. 2018 Jun 22;8(41):23027-23039. doi: 10.1039/c8ra03849j. eCollection 2018 Jun 21.
5
Re-engineered imaging agent using biomimetic approaches.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jan;14(1):e1762. doi: 10.1002/wnan.1762. Epub 2021 Oct 26.
6
Alendronate Sodium Intercalation in Layered Double Hydroxide/Poly (ε-caprolactone): Application in Osteoporosis Treatment.
Iran J Biotechnol. 2021 Jan 1;19(1):e2490. doi: 10.30498/IJB.2021.2490. eCollection 2021 Jan.
7
Hyperpolarized MRI with silicon micro and nanoparticles: Principles and applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Nov;13(6):e1722. doi: 10.1002/wnan.1722. Epub 2021 May 13.
9
Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery.
Adv Mater. 2019 Dec;31(49):e1903637. doi: 10.1002/adma.201903637. Epub 2019 Sep 30.

本文引用的文献

1
Mitotic trafficking of silicon microparticles.
Nanoscale. 2009 Nov;1(2):250-9. doi: 10.1039/b9nr00138g. Epub 2009 Oct 5.
2
Sustained small interfering RNA delivery by mesoporous silicon particles.
Cancer Res. 2010 May 1;70(9):3687-96. doi: 10.1158/0008-5472.CAN-09-3931.
3
Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells.
Breast Cancer Res Treat. 2011 Jan;125(1):27-34. doi: 10.1007/s10549-010-0811-5. Epub 2010 Mar 10.
4
Enabling individualized therapy through nanotechnology.
Pharmacol Res. 2010 Aug;62(2):57-89. doi: 10.1016/j.phrs.2009.12.011. Epub 2010 Jan 5.
5
Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles.
Biomaterials. 2010 Mar;31(8):2388-98. doi: 10.1016/j.biomaterials.2009.11.093. Epub 2009 Dec 23.
6
Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows.
Nanotechnology. 2009 Dec 9;20(49):495101. doi: 10.1088/0957-4484/20/49/495101. Epub 2009 Nov 11.
7
Size and shape effects in the biodistribution of intravascularly injected particles.
J Control Release. 2010 Feb 15;141(3):320-7. doi: 10.1016/j.jconrel.2009.10.014. Epub 2009 Oct 27.
8
Modulating cellular adhesion through nanotopography.
Biomaterials. 2010 Jan;31(1):173-9. doi: 10.1016/j.biomaterials.2009.09.018. Epub 2009 Sep 26.
10
Combinatorial targeting and nanotechnology applications.
Biomed Microdevices. 2010 Aug;12(4):597-606. doi: 10.1007/s10544-009-9340-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验