Suppr超能文献

使用基于多尺度智能体模型模拟脑肿瘤异质性:连接分子特征、表型和扩展速率。

Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate.

作者信息

Zhang Le, Strouthos Costas G, Wang Zhihui, Deisboeck Thomas S

机构信息

Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.

出版信息

Math Comput Model. 2009 Jan 1;49(1-2):307-319. doi: 10.1016/j.mcm.2008.05.011.

Abstract

We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells' phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model's biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell 'search precisions'. The in silico results show that microscopic tumor heterogeneity can impact the tumor system's multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed.

摘要

我们扩展了之前开发的基于多尺度智能体的脑肿瘤三维模型,以模拟癌症异质性,并分析其在感兴趣尺度上的影响。虽然我们的算法继续采用表皮生长因子受体(EGFR)基因 - 蛋白质相互作用网络来确定细胞表型,但现在它增加了对与模型生化微环境相关的肿瘤细胞黏附的隐式处理。我们模拟了一条简化的肿瘤进展途径,该途径导致出现五个具有不同EGFR密度和细胞“搜索精度”的不同神经胶质瘤细胞克隆。计算机模拟结果表明,微观肿瘤异质性会影响肿瘤系统的多细胞生长模式。我们的研究结果进一步证实,EGFR密度导致更具侵袭性的克隆群体更早地从增殖主导型转变为更具迁移性的表型。此外,通过分析触发增殖与迁移之间表型转换的动态分子谱,我们的计算机肿瘤基因组学数据在记录肿瘤发生的区域影响方面显示出空间和时间多样性,从而支持了体外和体内多部位及重复评估的附加价值。本文讨论了这项计算机模拟工作对实验和计算研究的潜在影响。

相似文献

7
A HYBRID THREE-SCALE MODEL OF TUMOR GROWTH.肿瘤生长的混合三尺度模型
Math Models Methods Appl Sci. 2018 Jan;28(1):61-93. doi: 10.1142/S0218202518500021. Epub 2017 Nov 24.

引用本文的文献

1
A Review of the Application of Spatial Transcriptomics in Neuroscience.空间转录组学在神经科学中的应用综述。
Interdiscip Sci. 2024 Jun;16(2):243-260. doi: 10.1007/s12539-024-00603-4. Epub 2024 Feb 20.
2
Data-driven spatio-temporal modelling of glioblastoma.胶质母细胞瘤的数据驱动时空建模
R Soc Open Sci. 2023 Mar 22;10(3):221444. doi: 10.1098/rsos.221444. eCollection 2023 Mar.

本文引用的文献

5
Evolution of cooperation among tumor cells.肿瘤细胞间合作的演变
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13474-9. doi: 10.1073/pnas.0606053103. Epub 2006 Aug 28.
7
Tumor growth instability and the onset of invasion.肿瘤生长的不稳定性与侵袭的起始
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041907. doi: 10.1103/PhysRevE.72.041907. Epub 2005 Oct 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验