Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, NY 10016, USA.
Breast Cancer Res. 2010;12(5):R66. doi: 10.1186/bcr2633. Epub 2010 Sep 1.
Multi-marker molecular assays have impacted management of early stage breast cancer, facilitating adjuvant chemotherapy decisions. We generated prognostic models that incorporate protein-based molecular markers and clinico-pathological variables to improve survival prediction.
We used a quantitative immunofluorescence method to study protein expression of 14 markers included in the Oncotype DX™ assay on a 638 breast cancer patient cohort with 15-year follow-up. We performed cross-validation analyses to assess performance of multivariate Cox models consisting of these markers and standard clinico-pathological covariates, using an average time-dependent Area Under the Receiver Operating Characteristic curve and compared it to nested Cox models obtained by robust backward selection procedures.
A prognostic index derived from a multivariate Cox regression model incorporating molecular and clinico-pathological covariates (nodal status, tumor size, nuclear grade, and age) is superior to models based on molecular studies alone or clinico-pathological covariates alone. Performance of this composite model can be further improved using feature selection techniques to prune variables. When stratifying patients by Nottingham Prognostic Index (NPI), most prognostic markers in high and low NPI groups differed. Similarly, for the node-negative, hormone receptor-positive sub-population, we derived a compact model with three clinico-pathological variables and two protein markers that was superior to the full model.
Prognostic models that include both molecular and clinico-pathological covariates can be more accurate than models based on either set of features alone. Furthermore, feature selection can decrease the number of molecular variables needed to predict outcome, potentially resulting in less expensive assays.
多标志物分子检测已对早期乳腺癌的治疗产生影响,有助于辅助化疗决策。我们生成了包含基于蛋白的分子标志物和临床病理变量的预后模型,以提高生存预测能力。
我们使用定量免疫荧光法研究了 638 例乳腺癌患者队列中包含在 Oncotype DX™检测中的 14 种标志物的蛋白表达,这些患者具有 15 年的随访数据。我们进行了交叉验证分析,以评估由这些标志物和标准临床病理协变量组成的多变量 Cox 模型的性能,使用平均时间依赖性接收者操作特征曲线下面积,并将其与通过稳健向后选择程序获得的嵌套 Cox 模型进行比较。
包含分子和临床病理协变量(淋巴结状态、肿瘤大小、核级和年龄)的多变量 Cox 回归模型得出的预后指数优于仅基于分子研究或临床病理协变量的模型。使用特征选择技术修剪变量可以进一步提高该综合模型的性能。当按 Nottingham 预后指数(NPI)对患者进行分层时,高和低 NPI 组中的大多数预后标志物都不同。同样,对于淋巴结阴性、激素受体阳性的亚群,我们推导出了一个包含三个临床病理变量和两个蛋白标志物的紧凑模型,该模型优于全模型。
包含分子和临床病理协变量的预后模型可以比仅基于一组特征的模型更准确。此外,特征选择可以减少预测结果所需的分子变量数量,从而可能导致更廉价的检测。