Suppr超能文献

一种贝叶斯系统发育方法,用于估计语言特征的稳定性和声调的遗传偏向。

A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone.

机构信息

Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands.

出版信息

Proc Biol Sci. 2011 Feb 7;278(1704):474-9. doi: 10.1098/rspb.2010.1595. Epub 2010 Sep 1.

Abstract

Language is a hallmark of our species and understanding linguistic diversity is an area of major interest. Genetic factors influencing the cultural transmission of language provide a powerful and elegant explanation for aspects of the present day linguistic diversity and a window into the emergence and evolution of language. In particular, it has recently been proposed that linguistic tone-the usage of voice pitch to convey lexical and grammatical meaning-is biased by two genes involved in brain growth and development, ASPM and Microcephalin. This hypothesis predicts that tone is a stable characteristic of language because of its 'genetic anchoring'. The present paper tests this prediction using a Bayesian phylogenetic framework applied to a large set of linguistic features and language families, using multiple software implementations, data codings, stability estimations, linguistic classifications and outgroup choices. The results of these different methods and datasets show a large agreement, suggesting that this approach produces reliable estimates of the stability of linguistic data. Moreover, linguistic tone is found to be stable across methods and datasets, providing suggestive support for the hypothesis of genetic influences on its distribution.

摘要

语言是人类的标志,研究语言多样性是一个主要的兴趣领域。影响语言文化传播的遗传因素为当今语言多样性的某些方面提供了一个强大而优雅的解释,并为语言的出现和演变提供了一个窗口。特别是,最近有人提出,语言声调——使用音高传达词汇和语法意义——受到两个与大脑生长和发育有关的基因的影响,即 ASPM 和 Microcephalin。这一假设预测,由于其“遗传锚定”,声调是语言的一个稳定特征。本文使用贝叶斯系统发育框架,应用于大量语言特征和语言家族,使用多种软件实现、数据编码、稳定性估计、语言分类和外群选择,对这一预测进行了检验。这些不同方法和数据集的结果非常一致,表明这种方法可以可靠地估计语言数据的稳定性。此外,在不同的方法和数据集中都发现了声调的稳定性,这为基因对其分布的影响的假设提供了有说服力的支持。

相似文献

5
Testing methods of linguistic homeland detection using synthetic data.使用合成数据进行语言家乡检测的测试方法。
Philos Trans R Soc Lond B Biol Sci. 2021 May 10;376(1824):20200202. doi: 10.1098/rstb.2020.0202. Epub 2021 Mar 22.
8
Explaining the linguistic diversity of Sahul using population models.用人口模型解释萨赫尔地区的语言多样性。
PLoS Biol. 2009 Nov;7(11):e1000241. doi: 10.1371/journal.pbio.1000241. Epub 2009 Nov 17.
9
Nonlinear diversification rates of linguistic phylogenies over the Holocene.全新世语言谱系的非线性多样化速率。
PLoS One. 2019 Jul 17;14(7):e0213126. doi: 10.1371/journal.pone.0213126. eCollection 2019.

引用本文的文献

3
How individuals change language.个体如何改变语言。
PLoS One. 2021 Jun 2;16(6):e0252582. doi: 10.1371/journal.pone.0252582. eCollection 2021.

本文引用的文献

1
Eliminating unpredictable variation through iterated learning.通过迭代学习消除不可预测的变化。
Cognition. 2010 Sep;116(3):444-9. doi: 10.1016/j.cognition.2010.06.004. Epub 2010 Jul 7.
2
The shape and tempo of language evolution.语言进化的形态和节奏。
Proc Biol Sci. 2010 Aug 22;277(1693):2443-50. doi: 10.1098/rspb.2010.0051. Epub 2010 Apr 7.
9
FOXP2 as a molecular window into speech and language.FOXP2:通往言语和语言的分子窗口
Trends Genet. 2009 Apr;25(4):166-77. doi: 10.1016/j.tig.2009.03.002. Epub 2009 Mar 21.
10
Genetic and linguistic coevolution in Northern Island Melanesia.美拉尼西亚北部岛屿的遗传与语言共同进化
PLoS Genet. 2008 Oct;4(10):e1000239. doi: 10.1371/journal.pgen.1000239. Epub 2008 Oct 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验