Suppr超能文献

通过空间数据整合揭示胰腺癌发生过程中的胰腺上皮内瘤变(PanIN)和癌症相关成纤维细胞(CAF)转变

PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration.

作者信息

Bell Alexander T F, Mitchell Jacob T, Kiemen Ashley L, Lyman Melissa, Fujikura Kohei, Lee Jae W, Coyne Erin, Shin Sarah M, Nagaraj Sushma, Deshpande Atul, Wu Pei-Hsun, Sidiropoulos Dimitrios N, Erbe Rossin, Stern Jacob, Chan Rena, Williams Stephen, Chell James M, Ciotti Lauren, Zimmerman Jacquelyn W, Wirtz Denis, Ho Won Jin, Zaidi Neeha, Thompson Elizabeth, Jaffee Elizabeth M, Wood Laura D, Fertig Elana J, Kagohara Luciane T

机构信息

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.

出版信息

Cell Syst. 2024 Aug 21;15(8):753-769.e5. doi: 10.1016/j.cels.2024.07.001. Epub 2024 Aug 7.

Abstract

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.

摘要

本研究引入了一种新的成像、空间转录组学(ST)和单细胞RNA测序整合流程,以表征肿瘤发生过程中的肿瘤细胞状态转变。我们应用了一种半监督分析流程来研究可发展为胰腺导管腺癌(PDAC)的癌前胰腺上皮内瘤变(PanINs)。对福尔马林固定石蜡包埋(FFPE)样本的严格诊断限制了人类PanINs在其微环境中的单细胞表征。我们利用全转录组FFPE ST来研究一组罕见的匹配的低级别(LG)和高级别(HG)PanIN病变,以追踪进展并相对于单细胞PDAC数据集绘制细胞表型图谱。我们证明癌症相关成纤维细胞(CAFs),包括抗原呈递CAFs,位于PanINs附近。我们进一步观察到在PanIN进展过程中从CAF相关的炎症信号传导到细胞增殖的转变。我们用单细胞高维成像蛋白质组学和转录组学技术验证了这些发现。总之,我们的空间多组学半监督学习框架在多种癌症类型中具有广泛的适用性,以解读致癌作用的时空动态。

相似文献

引用本文的文献

5
Informatics at the Frontier of Cancer Research.癌症研究前沿的信息学
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验