The James Franck Institute and Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16444-7. doi: 10.1073/pnas.1007579107. Epub 2010 Sep 1.
Electronic structure and dynamics determine material properties and behavior. Important time scales for electronic dynamics range from attoseconds to milliseconds. Two-dimensional optical spectroscopy has proven an incisive tool to probe fast spatiotemporal electronic dynamics in complex multichromophoric systems. However, acquiring these spectra requires long point-by-point acquisitions that preclude observations on the millisecond and microsecond time scales. Here we demonstrate that imaging temporally encoded information within a homogeneous sample allows mapping of the evolution of the electronic Hamiltonian with femtosecond temporal resolution in a single-laser-shot, providing real-time maps of electronic coupling. This method, which we call GRadient-Assisted Photon Echo spectroscopy (GRAPE), eliminates phase errors deleterious to Fourier spectroscopies while reducing the acquisition time by orders of magnitude using only conventional optical components. In analogy to MRI in which magnetic field gradients are used to create spatial correlation maps, GRAPE spectroscopy takes advantage of a similar type of spatial encoding to construct electronic correlation maps. Unlike magnetic resonance, however, this spatial encoding of the nonlinear polarization along the excitation frequency axis of the two-dimensional spectrum results in no loss in signal while simultaneously reducing overall noise. Correlating the energy transfer events and electronic coupling occurring in tens of femtoseconds with slow dynamics on the subsecond time scale is fundamentally important in photobiology, solar energy research, nonlinear spectroscopy, and optoelectronic device characterization.
电子结构和动力学决定了材料的性质和行为。电子动力学的重要时间尺度范围从阿秒到毫秒。二维光学光谱已被证明是一种锐利的工具,可以探测复杂多色系统中快速的时空电子动力学。然而,获取这些光谱需要长时间的逐点采集,这使得在毫秒和微秒时间尺度上的观察变得不可能。在这里,我们证明了在均匀样品内对时间编码信息进行成像可以在单个激光脉冲内以飞秒时间分辨率绘制电子哈密顿量的演化图,提供电子耦合的实时图谱。这种方法称为梯度辅助光子回波光谱学(GRAPE),它消除了对傅里叶光谱学有害的相位误差,同时仅使用传统光学元件将采集时间减少几个数量级。类似于磁共振成像中使用磁场梯度来创建空间相关图,GRAPE 光谱学利用类似的空间编码来构建电子相关图。然而,与磁共振不同的是,这种沿着二维光谱激发频率轴的非线性极化的空间编码不会导致信号丢失,同时还能降低整体噪声。将在数十飞秒内发生的能量转移事件和电子耦合与亚秒级的慢动力学相关联,在光生物学、太阳能研究、非线性光谱学和光电设备特性方面具有重要的基本意义。