Suppr超能文献

单脉冲梯度辅助光子回波电子光谱学。

Single-shot gradient-assisted photon echo electronic spectroscopy.

机构信息

The James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Phys Chem A. 2011 Apr 28;115(16):3787-96. doi: 10.1021/jp107022f. Epub 2010 Nov 23.

Abstract

Two-dimensional electronic spectroscopy (2D ES) maps the electronic structure of complex systems on a femtosecond time scale. While analogous to multidimensional NMR spectroscopy, 2D optical spectroscopy differs significantly in its implementation. Yet, 2D Fourier spectroscopies still require point-by-point sampling of the time delay between two pulses responsible for creating quantum coherence among states. Unlike NMR, achieving the requisite phase stability at optical frequencies between these pulse pairs remains experimentally challenging. Nonetheless, 2D optical spectroscopy has been successfully demonstrated by combining passive and active phase stabilization along with precise control of optical delays and long-term temperature stability, although the widespread adoption of 2D ES has been significantly hampered by these technical challenges. Here, we exploit an analogy to magnetic resonance imaging (MRI) to demonstrate a single-shot method capable of acquiring the entire 2D spectrum in a single laser shot using only conventional optics. Unlike point-by-point sampling protocols typically used to record 2D spectra, this method, which we call GRadient-Assisted Photon Echo (GRAPE) spectroscopy, largely eliminates phase errors while reducing the acquisition time by orders of magnitude. By incorporating a spatiotemporal encoding of the nonlinear polarization along the excitation frequency axis of the 2D spectrum, GRAPE spectroscopy achieves no loss in signal while simultaneously reducing overall noise. Here, we describe the principles of GRAPE spectroscopy and discuss associated experimental considerations.

摘要

二维电子光谱(2D ES)在飞秒时间尺度上绘制复杂系统的电子结构。虽然与多维 NMR 光谱类似,但 2D 光学光谱在实现方式上有很大的不同。然而,2D 傅里叶光谱仍然需要逐个点地采样两个脉冲之间的时间延迟,这两个脉冲负责在状态之间产生量子相干。与 NMR 不同,在这些脉冲对之间的光学频率下实现所需的相位稳定性在实验上仍然具有挑战性。尽管如此,通过结合被动和主动相位稳定以及对光学延迟和长期温度稳定性的精确控制,2D 光学光谱已经成功地得到了证明,尽管这些技术挑战极大地阻碍了 2D ES 的广泛采用。在这里,我们利用磁共振成像(MRI)的类比来证明一种单拍方法,该方法仅使用常规光学元件,在单个激光脉冲中即可获取整个 2D 光谱。与通常用于记录 2D 光谱的逐个点采样协议不同,这种我们称之为梯度辅助光子回波(GRAPE)光谱学的方法在大大减少相位误差的同时,将采集时间减少了几个数量级。通过在 2D 光谱的激发频率轴上对非线性极化进行时空编码,GRAPE 光谱学在不损失信号的情况下同时降低了整体噪声。在这里,我们描述了 GRAPE 光谱学的原理,并讨论了相关的实验注意事项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验