Suppr超能文献

合成与生物成因非晶碳酸钙的转化和结晶能态。

Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate.

机构信息

Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16438-43. doi: 10.1073/pnas.1009959107. Epub 2010 Sep 1.

Abstract

Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC ⇒ anhydrous ACC ∼ biogenic anhydrous ACC ⇒ vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO(2) sequestration.

摘要

无定形碳酸钙 (ACC) 是一种亚稳相,常在低温无机合成和生物矿化过程中观察到。ACC 随老化或加热转化为水合程度较低的形式,并随时间结晶为方解石或文石。使用等温酸溶液量热法和差示扫描量热法研究了合成和生物源(从加利福尼亚紫海胆幼虫刺的提取,紫海胆)ACC 的转化和结晶的能态。ACC 的转化和结晶可以遵循能量下降的顺序:更多亚稳水合 ACC → 较少亚稳水合 ACC ⇒ 无水 ACC ∼ 生物无水 ACC ⇒ 球霰石 → 文石 → 方解石。在给定的反应序列中,并非所有这些相都需要发生。这些转变涉及一系列有序化、脱水和结晶过程,每个过程都降低了系统的焓(和自由能),脱水的无定形材料的结晶降低焓最多。与结晶多形物球霰石或文石相比,ACC 对方解石的亚稳性要强得多。无水 ACC 比水合的更不稳定,这意味着脱水过程中的结构重组是放热和不可逆的。脱水合成和无水生物源 ACC 在焓上相似。在生物矿化中观察到的转变序列可能主要是能量驱动的;首先沉积的是水合 ACC,然后转化为无水 ACC,最后结晶为方解石。ACC 的初始形成可能是在广泛的条件下沉淀方解石的第一步,包括地质 CO2 封存。

相似文献

1
Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16438-43. doi: 10.1073/pnas.1009959107. Epub 2010 Sep 1.
2
Dehydration-induced amorphous phases of calcium carbonate.
J Phys Chem B. 2013 Mar 28;117(12):3328-36. doi: 10.1021/jp308353t. Epub 2013 Mar 14.
3
Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17362-6. doi: 10.1073/pnas.0806604105. Epub 2008 Nov 5.
4
Anhydrous amorphous calcium carbonate (ACC) is structurally different from the transient phase of biogenic ACC.
Chem Commun (Camb). 2019 Jun 11;55(48):6946-6949. doi: 10.1039/c9cc00518h.
5
Properties of amorphous calcium carbonate and the template action of vaterite spheres.
J Phys Chem B. 2006 Feb 23;110(7):2994-3000. doi: 10.1021/jp055063o.
6
Phase transitions in biogenic amorphous calcium carbonate.
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6088-93. doi: 10.1073/pnas.1118085109. Epub 2012 Apr 4.
7
Earthworm granules: A model of non-classical biogenic calcium carbonate phase transformations.
Acta Biomater. 2023 May;162:149-163. doi: 10.1016/j.actbio.2023.03.034. Epub 2023 Mar 29.
8
The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.
Nanoscale. 2011 Jan;3(1):265-71. doi: 10.1039/c0nr00589d. Epub 2010 Nov 10.
9
Growth and regrowth of adult sea urchin spines involve hydrated and anhydrous amorphous calcium carbonate precursors.
J Struct Biol X. 2019 Feb 8;1:100004. doi: 10.1016/j.yjsbx.2019.100004. eCollection 2019 Jan-Mar.

引用本文的文献

1
Unveiling the Formation Pathway of Vaterite from Amorphous Calcium Carbonate Using Metadynamics Simulations.
ACS Omega. 2025 Apr 23;10(17):17948-17959. doi: 10.1021/acsomega.5c01115. eCollection 2025 May 6.
2
Dehydration-Driven Glass Formation in Aqueous Carbonates.
J Phys Chem Lett. 2025 May 15;16(19):4773-4779. doi: 10.1021/acs.jpclett.5c00551. Epub 2025 May 7.
4
Reactive CaCO Formation from CO and Methanolic Ca(OH) Dispersions: Transient Methoxide Salts, Carbonate Esters and Sol-Gels.
ACS Phys Chem Au. 2024 Jul 23;4(5):555-567. doi: 10.1021/acsphyschemau.4c00041. eCollection 2024 Sep 25.
6
Insight into biomolecular interaction-based non-classical crystallization of bacterial biocement.
Appl Microbiol Biotechnol. 2023 Nov;107(21):6683-6701. doi: 10.1007/s00253-023-12736-5. Epub 2023 Sep 5.
7
Glass transition temperatures and crystallization kinetics of a synthetic, anhydrous, amorphous calcium-magnesium carbonate.
Philos Trans A Math Phys Eng Sci. 2023 Oct 16;381(2258):20220356. doi: 10.1098/rsta.2022.0356. Epub 2023 Aug 28.
8
Nucleation and Crystallization of Ferrous Phosphate Hydrate via an Amorphous Intermediate.
J Am Chem Soc. 2023 Jul 19;145(28):15137-15151. doi: 10.1021/jacs.3c01494. Epub 2023 Jul 6.
9
Inhibited and Retarded Behavior by Ca and Ca/OD Loading Rate on Ureolytic Bacteria in MICP Process.
Materials (Basel). 2023 Apr 25;16(9):3357. doi: 10.3390/ma16093357.
10
Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre.
Nat Commun. 2023 Apr 20;14(1):2254. doi: 10.1038/s41467-023-37814-0.

本文引用的文献

1
Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21511-6. doi: 10.1073/pnas.0906741106. Epub 2009 Dec 2.
2
Mechanism of calcite co-orientation in the sea urchin tooth.
J Am Chem Soc. 2009 Dec 30;131(51):18404-9. doi: 10.1021/ja907063z.
3
A molecular dynamics study of the early stages of calcium carbonate growth.
J Phys Chem B. 2009 Aug 27;113(34):11680-7. doi: 10.1021/jp902606x.
4
Thermochemistry of microporous and mesoporous materials.
Chem Rev. 2009 Sep;109(9):3885-902. doi: 10.1021/cr800495t.
5
The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM.
Science. 2009 Mar 13;323(5920):1455-8. doi: 10.1126/science.1169434.
6
Stable prenucleation calcium carbonate clusters.
Science. 2008 Dec 19;322(5909):1819-22. doi: 10.1126/science.1164271.
7
Controlling mineral morphologies and structures in biological and synthetic systems.
Chem Rev. 2008 Nov;108(11):4332-432. doi: 10.1021/cr8002856.
8
Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17362-6. doi: 10.1073/pnas.0806604105. Epub 2008 Nov 5.
9
On the structure of amorphous calcium carbonate--a detailed study by solid-state NMR spectroscopy.
Inorg Chem. 2008 Sep 1;47(17):7874-9. doi: 10.1021/ic8007409. Epub 2008 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验