Politi Yael, Metzler Rebecca A, Abrecht Mike, Gilbert Benjamin, Wilt Fred H, Sagi Irit, Addadi Lia, Weiner Steve, Gilbert P U P A
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17362-6. doi: 10.1073/pnas.0806604105. Epub 2008 Nov 5.
Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism.
海胆幼虫的骨针将无定形碳酸钙(ACC)转化为方解石单晶。转化机制神秘莫测:正在转化的骨针兼具无定形和晶体特性,且没有明确的结晶前沿。在此,我们使用探测尺寸为40 - 200纳米的X射线光电子发射光谱显微镜。我们分辨出3种不同的矿物相:最初短暂存在的、可能是水合的ACC相,接着是ACC的中间过渡形式,最后是生物成因的晶体方解石相。无定形相和晶体相并列存在,常常在几十纳米的尺度上出现在相邻位置。我们提出,无定形 - 晶体转化通过二次成核机制,在预先存在的40至100纳米无定形单元中以曲折路径传播。