Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
J Mass Spectrom. 2010 Dec;45(12):1373-82. doi: 10.1002/jms.1808.
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis-driven structural mass spectrometry experiments.
羟基自由基蛋白质足迹法与质谱联用技术在过去十年中得到了发展,并已成熟为一种分析蛋白质结构和动力学的强大方法。它已成功应用于蛋白质结构、蛋白质折叠、蛋白质动力学以及蛋白质-蛋白质和蛋白质-DNA 相互作用的分析。利用同步辐射解,将蛋白质暴露于毫秒级的“白色”X 射线束中,可提供足够的氧化修饰表面氨基酸侧链,通过质谱很容易检测和定量。因此,可以使用时间分辨方法来检查蛋白质或蛋白质复合物的构象变化,这将是研究大分子动力学的一种有价值的方法。在这篇综述中,我们描述了羟基自由基蛋白质足迹法的一种新应用,用于探测钙依赖性凝胶蛋白构象变化的毫秒时间尺度上的时间演变。数据表明,多个分子亚结构域中的多个位点具有相似的构象变化速率,存在协同转变。这些发现表明,时间分辨蛋白质足迹法适合于研究毫秒到秒级时间范围内发生的蛋白质动力学。在这篇综述中,我们还展示了如何提高该技术的结构分辨率和灵敏度。羟基自由基对不同侧链的反应性差异超过两个数量级,因此在这种实验中,低反应性氨基酸侧链的氧化更为罕见。在这里,我们证明了基于选择反应监测 (SRM) 的方法可用于定量氧化产物,从而提高信噪比。这种低反应性氧化残基的集合的扩展将提高该技术的整体结构分辨率。该方法还被建议作为开发基于假设的结构质谱实验的基础。