Universidad Autonoma Metropolitana-Izt, Mexico DF 09340, Mexico.
IEEE Trans Biomed Eng. 2011 Feb;58(2):348-54. doi: 10.1109/TBME.2010.2072957. Epub 2010 Sep 2.
Auditory evoked potential (AEP) recordings have been analyzed through independent component analysis (ICA) in the literature; however, the performance varies depending on the ICA algorithms used. There are very few studies that concentrate on the optimum parameter selection for estimating the AEP components reliably, while also recovering the specific artifact generated with the normal functioning of a cochlear implant (CI). The objective of this research is to determine which ICA algorithm, high-order statistics (HOS)-based or second-order statistic (SOS)-based, is more plausible to remove this artifact and estimate the AEP. The optimal parameters of three such ICA algorithms for estimating the components from a database of recordings were determined, and then the estimates for the AEP and CI artifact were compared using each method. All the algorithms estimate the CI artifact reasonably well, although only one SOS algorithm is better positioned to estimate the AEP; this is primarily because it uses the temporal structure of this signal as part of the ICA process.
听觉诱发电位(AEP)记录在文献中已通过独立成分分析(ICA)进行了分析;然而,其性能取决于所使用的 ICA 算法。只有很少的研究集中在可靠估计 AEP 分量的最佳参数选择上,同时还恢复了与耳蜗植入物(CI)正常功能相关的特定伪影。本研究旨在确定基于高阶统计量(HOS)或基于二阶统计量(SOS)的 ICA 算法哪一种更有可能去除这种伪影并估计 AEP。确定了从记录数据库中估计分量的三种此类 ICA 算法的最佳参数,然后使用每种方法比较 AEP 和 CI 伪影的估计值。所有算法都能很好地估计 CI 伪影,尽管只有一种 SOS 算法更适合估计 AEP;这主要是因为它将该信号的时间结构作为 ICA 过程的一部分。