Suppr超能文献

一种用于抑制与设备相关的脑电图伪迹的新方法,以探索单侧耳聋中与人工耳蜗相关的皮质变化。

A novel method for device-related electroencephalography artifact suppression to explore cochlear implant-related cortical changes in single-sided deafness.

作者信息

Kim Kyungsoo, Punte Andrea Kleine, Mertens Griet, Van de Heyning Paul, Park Kyung-Joon, Choi Hongsoo, Choi Ji-Woong, Song Jae-Jin

机构信息

Department of Information and Communication Engineering, DGIST, Daegu, Republic of Korea.

Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Antwerp, Edegem, Belgium.

出版信息

J Neurosci Methods. 2015 Nov 30;255:22-8. doi: 10.1016/j.jneumeth.2015.07.020. Epub 2015 Jul 29.

Abstract

BACKGROUND

Quantitative electroencephalography (qEEG) is effective when used to analyze ongoing cortical oscillations in cochlear implant (CI) users. However, localization of cortical activity in such users via qEEG is confounded by the presence of artifacts produced by the device itself. Typically, independent component analysis (ICA) is used to remove CI artifacts in auditory evoked EEG signals collected upon brief stimulation and it is effective for auditory evoked potentials (AEPs). However, AEPs do not reflect the daily environments of patients, and thus, continuous EEG data that are closer to such environments are desirable. In this case, device-related artifacts in EEG data are difficult to remove selectively via ICA due to over-completion of EEG data removal in the absence of preprocessing.

NEW METHODS

EEGs were recorded for a long time under conditions of continuous auditory stimulation. To obviate the over-completion problem, we limited the frequency of CI artifacts to a significant characteristic peak and apply ICA artifact removal.

RESULTS

Topographic brain mapping results analyzed via band-limited (BL)-ICA exhibited a better energy distribution, matched to the CI location, than data obtained using conventional ICA. Also, source localization data verified that BL-ICA effectively removed CI artifacts.

COMPARISON WITH EXISTING METHOD

The proposed method selectively removes CI artifacts from continuous EEG recordings, while ICA removal method shows residual peak and removes important brain activity signals.

CONCLUSION

CI artifacts in EEG data obtained during continuous passive listening can be effectively removed with the aid of BL-ICA, opening up new EEG research possibilities in subjects with CIs.

摘要

背景

定量脑电图(qEEG)用于分析人工耳蜗(CI)使用者的持续皮层振荡时很有效。然而,通过qEEG对这类使用者的皮层活动进行定位会因设备本身产生的伪迹而变得复杂。通常,独立成分分析(ICA)用于去除在短暂刺激时收集的听觉诱发脑电图信号中的CI伪迹,并且它对听觉诱发电位(AEP)有效。然而,AEP不能反映患者的日常环境,因此,更接近此类环境的连续脑电图数据是可取的。在这种情况下,由于在没有预处理的情况下脑电图数据去除过度,脑电图数据中与设备相关的伪迹很难通过ICA选择性地去除。

新方法

在连续听觉刺激条件下长时间记录脑电图。为了避免过度去除问题,我们将CI伪迹的频率限制在一个显著的特征峰值,并应用ICA去除伪迹。

结果

通过带限(BL)-ICA分析的脑地形图结果显示,与使用传统ICA获得的数据相比,其能量分布更好,与CI位置相匹配。此外,源定位数据证实BL-ICA有效地去除了CI伪迹。

与现有方法的比较

所提出的方法从连续脑电图记录中选择性地去除CI伪迹,而ICA去除方法显示有残留峰值并去除了重要的脑活动信号。

结论

借助BL-ICA可以有效去除连续被动聆听期间获得的脑电图数据中的CI伪迹,为CI受试者开辟了新的脑电图研究可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验