Suppr超能文献

稳定同位素数据标准化中的误差传播:蒙特卡罗分析。

Error propagation in normalization of stable isotope data: a Monte Carlo analysis.

机构信息

West Australian Biogeochemistry Centre, John de Laeter Centre of Mass Spectrometry, School of Plant Biology, The University of Western Australia, 35 Stirling Highway (MO90), Crawley WA 6009, Australia.

出版信息

Rapid Commun Mass Spectrom. 2010 Sep;24(18):2697-705. doi: 10.1002/rcm.4684.

Abstract

A higher analytical precision of a stable isotope ratio mass spectrometer does not automatically guarantee accurate determination of the true isotope composition (delta-value) of samples, since estimates of true delta-values are obtained from the normalization of raw isotope data. We performed both Monte Carlo simulations and laboratory experiments to investigate aspects of error propagation during the normalization of carbon stable isotope data. We found that increasing both the number of different reference standards and the number of repetitions of each of these standards reduces the normalization error. A 50% reduction in the normalization error can be achieved over the two-point normalization by either analyzing two standards four times each, or four standards two times each. If the true delta-value of a sample is approximately known a priori, the normalization error may then be reduced through a targeted choice of locally optimal standards. However, the difference in improvement is minimal and, therefore, a more practical strategy is to use two or more standards covering the whole stable isotope scale. The selection of different sets of standards by different laboratories or for different batches of samples in the same laboratory may lead to significant differences in the normalized delta-values of the same samples, leading to inconsistent results. Hence, the same set of standards should always be used for a particular element and a particular stable isotope analytical technique.

摘要

一台稳定同位素比质谱仪的分析精度越高,并不一定能保证准确测定样品的真实同位素组成(δ 值),因为真实 δ 值的估计是通过对原始同位素数据进行标准化得到的。我们通过蒙特卡罗模拟和实验室实验,研究了在对碳稳定同位素数据进行标准化过程中误差传递的各个方面。我们发现,增加不同参比标准的数量,并增加每个标准的重复次数,都可以减少标准化误差。通过对每个标准重复分析 4 次,或每次分析 2 个标准各 2 次,可使两点标准化的标准化误差减少 50%。如果样品的真实 δ 值可以事先大致确定,则可以通过有针对性地选择局部最优标准来降低标准化误差。然而,改进程度非常小,因此更实用的策略是使用涵盖整个稳定同位素范围的两个或更多标准。不同实验室或同一实验室的不同批次样品选择不同的标准集,可能会导致同一批样品的标准化 δ 值有显著差异,从而导致结果不一致。因此,对于特定元素和特定稳定同位素分析技术,应始终使用同一套标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验