Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
Biophys J. 2010 Sep 8;99(5):1565-76. doi: 10.1016/j.bpj.2010.06.029.
Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg(2+) ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg(2+) binding in the competition with Na(+). Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg(2+)/Na(+) ion-binding to various RNA and DNA structures over a wide range of Mg(2+) and Na(+) concentrations.
最近的实验表明,对于多价离子(如 Mg(2+)离子)在 RNA 折叠中的作用,离子相关性具有重要意义。在这项研究中,我们开发了一种全原子模型来预测 RNA 折叠中的离子静电。该模型通过考虑离散离子分布的集合,可以显式地处理离子相关效应。与之前可以处理离子相关性的粗粒模型不同,这个新模型基于全原子核酸结构。因此,与之前的粗粒模型不同,这个新模型使我们能够处理 HIV-1 DIS 型 RNA 吻环复合物等复杂的三级结构。对各种三级结构的理论与实验比较表明,该模型比低估了 Mg(2+)与 Na(+)竞争结合的泊松-玻尔兹曼理论给出了更好的预测。对一系列三级结构进行的系统的理论与实验比较,为各种 RNA 和 DNA 结构在较宽的 Mg(2+)和 Na(+)浓度范围内与 Mg(2+)/Na(+)离子的结合提供了一组解析公式。