Suppr超能文献

预测 RNA 三级结构的离子结合特性。

Predicting ion binding properties for RNA tertiary structures.

机构信息

Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures, Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.

出版信息

Biophys J. 2010 Sep 8;99(5):1565-76. doi: 10.1016/j.bpj.2010.06.029.

Abstract

Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg(2+) ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg(2+) binding in the competition with Na(+). Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg(2+)/Na(+) ion-binding to various RNA and DNA structures over a wide range of Mg(2+) and Na(+) concentrations.

摘要

最近的实验表明,对于多价离子(如 Mg(2+)离子)在 RNA 折叠中的作用,离子相关性具有重要意义。在这项研究中,我们开发了一种全原子模型来预测 RNA 折叠中的离子静电。该模型通过考虑离散离子分布的集合,可以显式地处理离子相关效应。与之前可以处理离子相关性的粗粒模型不同,这个新模型基于全原子核酸结构。因此,与之前的粗粒模型不同,这个新模型使我们能够处理 HIV-1 DIS 型 RNA 吻环复合物等复杂的三级结构。对各种三级结构的理论与实验比较表明,该模型比低估了 Mg(2+)与 Na(+)竞争结合的泊松-玻尔兹曼理论给出了更好的预测。对一系列三级结构进行的系统的理论与实验比较,为各种 RNA 和 DNA 结构在较宽的 Mg(2+)和 Na(+)浓度范围内与 Mg(2+)/Na(+)离子的结合提供了一组解析公式。

相似文献

1
Predicting ion binding properties for RNA tertiary structures.
Biophys J. 2010 Sep 8;99(5):1565-76. doi: 10.1016/j.bpj.2010.06.029.
2
RNA helix stability in mixed Na+/Mg2+ solution.
Biophys J. 2007 May 15;92(10):3615-32. doi: 10.1529/biophysj.106.100388. Epub 2007 Feb 26.
3
Predicting Ion Effects in an RNA Conformational Equilibrium.
J Phys Chem B. 2017 Aug 31;121(34):8026-8036. doi: 10.1021/acs.jpcb.7b03873. Epub 2017 Aug 21.
4
Competitive Binding of Mg and Na Ions to Nucleic Acids: From Helices to Tertiary Structures.
Biophys J. 2018 Apr 24;114(8):1776-1790. doi: 10.1016/j.bpj.2018.03.001.
5
Salt contribution to RNA tertiary structure folding stability.
Biophys J. 2011 Jul 6;101(1):176-87. doi: 10.1016/j.bpj.2011.05.050.
6
A thermodynamic framework for the magnesium-dependent folding of RNA.
Biopolymers. 2003 May;69(1):118-36. doi: 10.1002/bip.10353.
7
Predicting electrostatic forces in RNA folding.
Methods Enzymol. 2009;469:465-87. doi: 10.1016/S0076-6879(09)69022-4. Epub 2009 Nov 17.
8
Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model.
J Mol Biol. 2000 Jun 9;299(3):813-25. doi: 10.1006/jmbi.2000.3769.
10
Many-body effect in ion binding to RNA.
J Chem Phys. 2014 Aug 7;141(5):055101. doi: 10.1063/1.4890656.

引用本文的文献

1
Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg.
bioRxiv. 2025 Feb 28:2024.11.17.624048. doi: 10.1101/2024.11.17.624048.
3
RNA 3D Structure Prediction: Progress and Perspective.
Molecules. 2023 Jul 20;28(14):5532. doi: 10.3390/molecules28145532.
4
rsRNASP: A residue-separation-based statistical potential for RNA 3D structure evaluation.
Biophys J. 2022 Jan 4;121(1):142-156. doi: 10.1016/j.bpj.2021.11.016. Epub 2021 Nov 17.
5
Salt-Dependent RNA Pseudoknot Stability: Effect of Spatial Confinement.
Front Mol Biosci. 2021 Apr 13;8:666369. doi: 10.3389/fmolb.2021.666369. eCollection 2021.
6
Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics.
Langmuir. 2020 Jun 2;36(21):5979-5989. doi: 10.1021/acs.langmuir.0c00851. Epub 2020 May 16.
7
Predicting Monovalent Ion Correlation Effects in Nucleic Acids.
ACS Omega. 2019 Aug 5;4(8):13435-13446. doi: 10.1021/acsomega.9b01689. eCollection 2019 Aug 20.
9
What is the best reference state for building statistical potentials in RNA 3D structure evaluation?
RNA. 2019 Jul;25(7):793-812. doi: 10.1261/rna.069872.118. Epub 2019 Apr 17.
10
Predicting RNA-Metal Ion Binding with Ion Dehydration Effects.
Biophys J. 2019 Jan 22;116(2):184-195. doi: 10.1016/j.bpj.2018.12.006. Epub 2018 Dec 13.

本文引用的文献

1
Predicting electrostatic forces in RNA folding.
Methods Enzymol. 2009;469:465-87. doi: 10.1016/S0076-6879(09)69022-4. Epub 2009 Nov 17.
2
Simulations of RNA interactions with monovalent ions.
Methods Enzymol. 2009;469:411-32. doi: 10.1016/S0076-6879(09)69020-0. Epub 2009 Nov 17.
4
Salt-dependent folding energy landscape of RNA three-way junction.
Biophys J. 2010 Jan 6;98(1):111-20. doi: 10.1016/j.bpj.2009.09.057.
5
Molecular simulation studies of monovalent counterion-mediated interactions in a model RNA kissing loop.
J Mol Biol. 2009 Jul 24;390(4):805-19. doi: 10.1016/j.jmb.2009.05.071. Epub 2009 May 29.
6
Mechanical unfolding of two DIS RNA kissing complexes from HIV-1.
J Mol Biol. 2009 Mar 13;386(5):1343-56. doi: 10.1016/j.jmb.2009.01.023.
7
The influence of monovalent cation size on the stability of RNA tertiary structures.
J Mol Biol. 2009 Jul 24;390(4):791-804. doi: 10.1016/j.jmb.2009.04.083. Epub 2009 May 7.
8
The dynamic landscapes of RNA architecture.
Cell. 2009 Feb 20;136(4):604-9. doi: 10.1016/j.cell.2009.02.003.
9
Abrupt transition from a free, repulsive to a condensed, attractive DNA phase, induced by multivalent polyamine cations.
Phys Rev Lett. 2008 Nov 28;101(22):228101. doi: 10.1103/PhysRevLett.101.228101. Epub 2008 Nov 26.
10
RNA folding: thermodynamic and molecular descriptions of the roles of ions.
Biophys J. 2008 Dec 15;95(12):5489-95. doi: 10.1529/biophysj.108.131813. Epub 2008 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验