Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.
J Biol Chem. 2010 Nov 5;285(45):35155-68. doi: 10.1074/jbc.M110.101212. Epub 2010 Sep 3.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na(+) overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na(+)/H(+) exchanger isoform 1) in dendrites presents a major pathway for Na(+) overload. Neuronal dendrites exhibited higher pH(i) regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70-200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na(+)(i) accumulation, swelling, and a concurrent loss of Ca(2+)(i) homeostasis. The Ca(2+)(i) overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na(+)/Ca(2+) exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca(2+) homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na(+) entry and subsequent Na(+)/Ca(2+) exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.
神经元树突在多种病理条件下容易受到损伤。然而,树突钠超载和选择性树突损伤的潜在机制仍不清楚。我们目前的研究表明,树突中 NHE-1(钠/氢交换体同工型 1)的激活是钠超载的主要途径。由于表面积/体积比更大,神经元树突的 pH(i)调节率比胞体更高。在氧葡萄糖剥夺 2 小时和再氧合 1 小时后,NHE-1 活性在树突中增加了约 70-200%。这种升高依赖于 p90 核糖体 S6 激酶的激活。此外,NHE-1 的刺激导致树突 Na(+)(i)积累、肿胀以及 Ca(2+)(i)稳态的同时丧失。树突中的 Ca(2+)(i)超载先于胞体的变化。NHE-1 的抑制或 Na(+)/Ca(2+)交换的反向模式可防止这些变化。氧葡萄糖剥夺/再氧合后,树突中的线粒体膜电位比胞体早 40 分钟去极化。阻断 NHE-1 活性不仅减轻了树突线粒体膜电位和线粒体 Ca(2+)稳态的丧失,而且还维持了树突膜的完整性。总之,我们的研究表明,NHE-1 介导的钠内流和随后的钠/钙交换激活导致体外缺血时树突的选择性易损性。