Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
J Neuroinflammation. 2022 May 27;19(1):125. doi: 10.1186/s12974-022-02490-2.
Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention.
To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling.
Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (T) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing T cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro.
These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.
缺血性中风是全球范围内导致死亡的主要原因,主要是由于中风后再灌注期间的炎症反应。尽管正在进行深入的研究,但针对炎症成分的治疗中风的临床批准药物尚未出现。临床前研究已经确定 T 细胞是缺血性脑损伤的促炎介质,然而,调节这些细胞浸润和表型的机制尚不清楚。进一步了解 T 细胞如何迁移到缺血性大脑并促进脑缺血期间神经元死亡,可以揭示中风后干预的新靶点。
为了确定产生 IL-21 并导致中风的 T 细胞群体,我们在小鼠中进行了短暂性大脑中动脉闭塞(tMCAO),并对脑组织进行了流式细胞术分析。我们还利用小鼠和人脑切片中的免疫组织化学方法来鉴定与中风诱导的 IL-21 信号相关的细胞类型和炎症介质。为了从机制上证明我们的发现,我们使用了 CXCL13 的药理学抑制剂抗-CXCL13 并进行了组织学分析,以评估其对脑梗死损伤的影响。最后,为了评估中风的细胞机制,我们将小鼠原代神经元暴露于氧葡萄糖剥夺(OGD)条件下,同时给予或不给予 IL-21,并测量细胞活力、半胱氨酸天冬氨酸蛋白酶活性和 JAK/STAT 信号。
tMCAO 后小鼠大脑的流式细胞术鉴定出一种新型细胞群体,即缺血性大脑损伤后早期的 CXCR5+CD4+ICOS-1+T 滤泡辅助细胞(T)中产生 IL-21 的细胞。我们观察到炎性脑血管细胞上 CXCL13 的表达增加,并证明通过限制 CXCL13 的迁移和 IL-21 产生 T 细胞在缺血性大脑中的影响,抑制 CXCL13 可保护小鼠免受 tMCAO 的影响。我们还表明,神经元在体内的小鼠和人类中风组织的梗死周边区域表达 IL-21R。最后,我们发现 IL-21 在体外作用于小鼠原代缺血神经元以激活 JAK/STAT 途径并诱导半胱氨酸天冬氨酸蛋白酶 3/7 介导的细胞凋亡。
这些发现确定了一种新的机制,即促炎 T 细胞如何被招募到缺血性大脑中以扩大中风损伤,并为中风提供了一个新的潜在治疗靶点。