Suppr超能文献

温度对单核细胞增生李斯特菌 F2365 需氧生长中过氧化氢酶的依赖性。

Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365.

机构信息

Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Schaub Hall, Raleigh, NC 27695-7624, USA.

出版信息

Appl Environ Microbiol. 2010 Nov;76(21):6998-7003. doi: 10.1128/AEM.01223-10. Epub 2010 Sep 3.

Abstract

Listeria monocytogenes is a Gram-positive, psychrotrophic, facultative intracellular food-borne pathogen responsible for severe illness (listeriosis). The bacteria can grow in a wide range of temperatures (1 to 45°C), and low-temperature growth contributes to the food safety hazards associated with contamination of ready-to-eat foods with this pathogen. To assess the impact of oxidative stress responses on the ability of L. monocytogenes to grow at low temperatures and to tolerate repeated freeze-thaw stress (cryotolerance), we generated and characterized a catalase-deficient mutant of L. monocytogenes F2365 harboring a mariner-based transposon insertion in the catalase gene (kat). When grown aerobically on blood-free solid medium, the kat mutant exhibited impaired growth, with the extent of impairment increasing with decreasing temperature, and no growth was detected at 4°C. Aerobic growth in liquid was impaired at 4°C, especially under aeration, but not at higher temperatures (10, 25, or 37°C). Genetic complementation of the mutant with the intact kat restored normal growth, confirming that inactivation of this gene was responsible for the growth impairment. In spite of the expected impact of oxidative stress responses on cryotolerance, cryotolerance of the kat mutant was not affected.

摘要

李斯特菌是一种革兰氏阳性、嗜冷、兼性细胞内食源性病原体,可导致严重疾病(李斯特菌病)。该细菌可在较宽的温度范围内(1 至 45°C)生长,低温生长导致与受这种病原体污染的即食食品相关的食品安全危害。为了评估氧化应激反应对李斯特菌在低温下生长和耐受反复冻融应激(耐冷性)的能力的影响,我们生成并表征了李斯特菌 F2365 的过氧化氢酶缺陷突变体,该突变体在过氧化氢酶基因(kat)中带有基于 mariner 的转座子插入。在无血固体培养基上有氧生长时,kat 突变体表现出生长受损,受损程度随温度降低而增加,在 4°C 时检测不到生长。4°C 时有氧液体生长受损,特别是在通气下,但在较高温度(10、25 或 37°C)下则不受影响。用完整的 kat 基因对突变体进行遗传互补恢复了正常生长,证实该基因失活是生长受损的原因。尽管预期氧化应激反应会对耐冷性产生影响,但 kat 突变体的耐冷性不受影响。

相似文献

1
Temperature-dependent requirement for catalase in aerobic growth of Listeria monocytogenes F2365.
Appl Environ Microbiol. 2010 Nov;76(21):6998-7003. doi: 10.1128/AEM.01223-10. Epub 2010 Sep 3.
3
Role of growth temperature in freeze-thaw tolerance of Listeria spp.
Appl Environ Microbiol. 2009 Aug;75(16):5315-20. doi: 10.1128/AEM.00458-09. Epub 2009 Jun 19.
5
Novel Cadmium Resistance Determinant in Listeria monocytogenes.
Appl Environ Microbiol. 2017 Feb 15;83(5). doi: 10.1128/AEM.02580-16. Print 2017 Mar 1.
6
Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures.
Appl Environ Microbiol. 1997 Oct;63(10):3887-94. doi: 10.1128/aem.63.10.3887-3894.1997.
8
Analyses of the putative Crp/Fnr family of transcriptional regulators of a serotype 4b strain of Listeria monocytogenes.
Food Microbiol. 2006 May;23(3):300-6. doi: 10.1016/j.fm.2005.03.007. Epub 2005 May 31.
10
Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures.
Crit Rev Food Sci Nutr. 2009 Mar;49(3):237-53. doi: 10.1080/10408390701856272.

引用本文的文献

2
Pathogenesis: The Role of Stress Adaptation.
Microorganisms. 2022 Jul 27;10(8):1522. doi: 10.3390/microorganisms10081522.
3
5
Adaptive Response of to the Stress Factors in the Food Processing Environment.
Front Microbiol. 2021 Aug 19;12:710085. doi: 10.3389/fmicb.2021.710085. eCollection 2021.
6
SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5943-5957. doi: 10.1007/s00253-021-11402-y. Epub 2021 Aug 5.
7
The Response to Oxidative Stress in Is Temperature Dependent.
Microorganisms. 2020 Apr 5;8(4):521. doi: 10.3390/microorganisms8040521.
9
Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics.
Front Nutr. 2019 Jun 14;6:89. doi: 10.3389/fnut.2019.00089. eCollection 2019.

本文引用的文献

2
Role of growth temperature in freeze-thaw tolerance of Listeria spp.
Appl Environ Microbiol. 2009 Aug;75(16):5315-20. doi: 10.1128/AEM.00458-09. Epub 2009 Jun 19.
3
In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection.
PLoS Pathog. 2009 May;5(5):e1000449. doi: 10.1371/journal.ppat.1000449. Epub 2009 May 29.
4
Role of oxidative stress in C. jejuni inactivation during freeze-thaw treatment.
Curr Microbiol. 2009 Feb;58(2):134-8. doi: 10.1007/s00284-008-9289-3. Epub 2008 Oct 28.
5
Teichoic acid glycosylation mediated by gtcA is required for phage adsorption and susceptibility of Listeria monocytogenes serotype 4b.
Appl Environ Microbiol. 2008 Mar;74(5):1653-5. doi: 10.1128/AEM.01773-07. Epub 2008 Jan 11.
6
The epidemiology of human listeriosis.
Microbes Infect. 2007 Aug;9(10):1236-43. doi: 10.1016/j.micinf.2007.05.011. Epub 2007 May 7.
7
A mariner-based transposition system for Listeria monocytogenes.
Appl Environ Microbiol. 2007 Apr;73(8):2758-61. doi: 10.1128/AEM.02844-06. Epub 2007 Feb 16.
8
Listeriosis due to infection with a catalase-negative strain of Listeria monocytogenes.
J Clin Microbiol. 2006 May;44(5):1917-8. doi: 10.1128/JCM.44.5.1917-1918.2006.
9
Intracellular gene expression profile of Listeria monocytogenes.
Infect Immun. 2006 Feb;74(2):1323-38. doi: 10.1128/IAI.74.2.1323-1338.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验