Suppr超能文献

低强度有氧间歇训练可减轻主动脉缩窄小型猪的病理性左心室重构和线粒体功能障碍。

Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine.

机构信息

Dept. of Biomedical Science, Univ. of Missouri, 1600 E. Rollins, E117 Veterinary Medicine, Columbia, MO 65211, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1348-56. doi: 10.1152/ajpheart.00578.2010. Epub 2010 Sep 3.

Abstract

Cardiac hypertrophy in response to hypertension or myocardial infarction is a pathological indicator associated with heart failure (HF). A central component of the remodeling process is the loss of cardiomyocytes via cell death pathways regulated by the mitochondrion. Recent evidence has indicated that exercise training can attenuate or reverse pathological remodeling, creating a physiological phenotype. The purpose of this study was to examine left ventricular (LV) function, remodeling, and cardiomyocyte mitochondrial function in aortic-banded (AB) sedentary (HFSED; n = 6), AB exercise-trained (HFTR, n = 5), and control sedentary (n = 5) male Yucatan miniature swine. LV hypertrophy was present in both AB groups before the start of training, as indicated by increases in LV end-diastolic volume, LV end-systolic volume (LVESV), and LV end-systolic dimension (LVESD). Exercise training (15 wk) prevented further increases in LVESV and LVESD (P < 0.05). The heart weight-to-body weight ratio, LV + septum-to-body weight ratio, LV + septum-to-right ventricle ratio, and cardiomyocyte cross-sectional area were increased in both AB groups postmortem regardless of training status. Preservation of LV function after exercise training, as indicated by the maintenance of fractional shortening, ejection fraction, and mean wall shortening and increased stroke volume, was associated with an attenuation of the increased LV fibrosis (23%) and collagen (36%) observed in HFSED animals. LV mitochondrial dysfunction, as measured by Ca(2+)-induced mitochondrial permeability transition, was increased in HFSED (P < 0.05) but not HFTR animals. In conclusion, low-intensity interval exercise training preserved LV function as exemplified by an attenuation of fibrosis, maintenance of a positive inotropic state, and inhibition of mitochondrial dysfunction, providing further evidence of the therapeutic potential of exercise in a clinical setting.

摘要

高血压或心肌梗死引起的心肌肥厚是心力衰竭(HF)相关的病理指标。重塑过程的一个核心组成部分是通过线粒体调节的细胞死亡途径导致心肌细胞丧失。最近的证据表明,运动训练可以减轻或逆转病理性重塑,产生生理表型。本研究的目的是检查主动脉带(AB)久坐(HFSED;n = 6)、AB 运动训练(HFTR,n = 5)和对照久坐(n = 5)雄性尤卡坦小型猪的左心室(LV)功能、重塑和心肌细胞线粒体功能。LV 肥大在 AB 两组中都存在,这表明 LV 舒张末期容积、LV 收缩末期容积(LVESV)和 LV 收缩末期直径(LVESD)增加。运动训练(15 周)阻止了 LVESV 和 LVESD 的进一步增加(P < 0.05)。无论训练状态如何,AB 两组的心脏重量与体重比、LV + 室间隔与体重比、LV + 室间隔与右心室比和心肌细胞横截面积在死后均增加。运动训练后 LV 功能的保持,如分数缩短、射血分数、平均壁缩短和增加的每搏量的保持,与观察到的 HFSED 动物中 LV 纤维化(23%)和胶原蛋白(36%)的增加减弱有关。LV 线粒体功能障碍,如 Ca(2+)诱导的线粒体通透性转换所测量的,在 HFSED 中增加(P < 0.05),但在 HFTR 中没有增加。总之,低强度间歇运动训练保持了 LV 功能,如纤维化减弱、正性肌力状态的维持和线粒体功能障碍的抑制,为运动在临床环境中的治疗潜力提供了进一步的证据。

相似文献

1
Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine.
Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1348-56. doi: 10.1152/ajpheart.00578.2010. Epub 2010 Sep 3.
2
Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function.
J Appl Physiol (1985). 2013 Jan 1;114(1):131-47. doi: 10.1152/japplphysiol.01059.2012. Epub 2012 Oct 25.
3
4
Chronic low-intensity exercise attenuates cardiomyocyte contractile dysfunction and impaired adrenergic responsiveness in aortic-banded mini-swine.
J Appl Physiol (1985). 2018 Apr 1;124(4):1034-1044. doi: 10.1152/japplphysiol.00840.2017. Epub 2018 Jan 4.
7
Chronic interval exercise training prevents BK channel-mediated coronary vascular dysfunction in aortic-banded miniswine.
J Appl Physiol (1985). 2018 Jul 1;125(1):86-96. doi: 10.1152/japplphysiol.01138.2017. Epub 2018 Mar 29.
8
A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure.
Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H311-H321. doi: 10.1152/ajpheart.00515.2017. Epub 2017 Nov 3.
9
T-tubule remodeling during transition from hypertrophy to heart failure.
Circ Res. 2010 Aug 20;107(4):520-31. doi: 10.1161/CIRCRESAHA.109.212324. Epub 2010 Jun 24.

引用本文的文献

1
Sexual dimorphism in animal models of heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2025 Jun 1;138(6):1449-1473. doi: 10.1152/japplphysiol.00595.2024. Epub 2025 May 5.
3
Increased resting heart rate indicates high-workload hearts with augmented aortic hydraulic power in hypertensive pigs.
PLoS One. 2025 Jan 13;20(1):e0316607. doi: 10.1371/journal.pone.0316607. eCollection 2025.
4
Left ventricle function and post-transcriptional events with exercise training in pigs.
PLoS One. 2024 Feb 2;19(2):e0292243. doi: 10.1371/journal.pone.0292243. eCollection 2024.
6
Evaluation of large animal models for preclinical studies of heart failure with preserved ejection fraction using clinical score systems.
Front Cardiovasc Med. 2023 Mar 23;10:1099453. doi: 10.3389/fcvm.2023.1099453. eCollection 2023.
7
Mechanism-Driven Modeling to Aid Non-invasive Monitoring of Cardiac Function Ballistocardiography.
Front Med Technol. 2022 Feb 16;4:788264. doi: 10.3389/fmedt.2022.788264. eCollection 2022.
8
Large animal models of heart failure with preserved ejection fraction.
Heart Fail Rev. 2022 Mar;27(2):595-608. doi: 10.1007/s10741-021-10184-9. Epub 2021 Nov 9.
10
The right ventricular transcriptome signature in Ossabaw swine with cardiometabolic heart failure: implications for the coronary vasculature.
Physiol Genomics. 2021 Mar 1;53(3):99-115. doi: 10.1152/physiolgenomics.00093.2020. Epub 2021 Jan 25.

本文引用的文献

1
The cardiac mitochondrion: nexus of stress.
Annu Rev Physiol. 2010;72:61-80. doi: 10.1146/annurev-physiol-021909-135929.
2
Moderate exercise training improves survival and ventricular remodeling in an animal model of left ventricular volume overload.
Circ Heart Fail. 2009 Sep;2(5):437-45. doi: 10.1161/CIRCHEARTFAILURE.108.845487. Epub 2009 Jun 15.
3
Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis.
Circulation. 2009 Aug 18;120(7):577-84. doi: 10.1161/CIRCULATIONAHA.108.847772. Epub 2009 Aug 3.
5
Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats.
Hypertension. 2009 Apr;53(4):701-7. doi: 10.1161/HYPERTENSIONAHA.108.127290. Epub 2009 Mar 2.
6
Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy.
Hypertension. 2009 Apr;53(4):708-14. doi: 10.1161/HYPERTENSIONAHA.108.126805. Epub 2009 Feb 16.
7
Role of apoptosis in cardiovascular disease.
Apoptosis. 2009 Apr;14(4):536-48. doi: 10.1007/s10495-008-0302-x.
9
Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling.
Cardiovasc Res. 2009 Feb 15;81(3):465-73. doi: 10.1093/cvr/cvn243. Epub 2008 Sep 8.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验