Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027, Grenoble, France.
Photochem Photobiol Sci. 2010 Oct 28;9(10):1342-50. doi: 10.1039/c0pp00141d. Epub 2010 Aug 31.
The fluorescent protein KillerRed generates reactive oxygen species through the CALI effect. This property paves the way for the design of genetically encoded photosensitizers for use in cell killing and cancer photodynamic therapy. In this article, we have investigated the diffusion pathways of di-oxygen and the superoxide radical in KillerRed, using molecular dynamics simulations. Our results suggest that, by comparison to the Ser-65-Thr mutant of GFP, diffusion of molecular oxygen (and singlet oxygen) is greatly facilitated in KillerRed, mostly due to the presence of a unique water-filled channel. In contrast, due to their negative charge, superoxide radical ions putatively produced inside the chromophore pocket are unable to escape the protein. These results are consistent with the hypothesis that superoxide generation, if it occurs, proceeds via light-induced photoreduction of the chromophore followed by long-range electron transfer, a mechanism in which the long hydrogen bond network through the channel could play a key role. Alternatively, the facilitated diffusion of di-oxygen through the channel suggests that singlet di-oxygen could be the principal cause of specific CALI of fused proteins. The entry of di-oxygen through the channel probably also accounts for the high susceptibility of KillerRed to photobleaching.
荧光蛋白 KillerRed 通过 CALI 效应产生活性氧。这一特性为设计用于细胞杀伤和癌症光动力治疗的基因编码光敏剂铺平了道路。在本文中,我们使用分子动力学模拟研究了 KillerRed 中二氧化氮和超氧自由基的扩散途径。我们的研究结果表明,与 GFP 的 Ser-65-Thr 突变体相比, KillerRed 中分子氧(和单线态氧)的扩散得到了极大的促进,这主要是由于存在独特的充满水的通道。相比之下,由于带负电荷,假定在生色团口袋内产生的超氧自由基离子无法逃离蛋白质。这些结果与假设一致,即超氧的产生如果发生,是通过光诱导生色团的光还原,然后是长程电子转移进行的,如果发生这种情况,该机制中生色团通道中的长氢键网络可能发挥关键作用。或者,通过通道的二氧化氮的促进扩散表明,单线态二氧化氮可能是融合蛋白特定 CALI 的主要原因。氧通过通道的进入可能也解释了 KillerRed 对光漂白的高敏感性。